Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2012, Article ID 960201, 9 pages
http://dx.doi.org/10.1155/2012/960201
Review Article

Polymer/QDs Nanocomposites for Waveguiding Applications

(Unidad Asociada al CSIC-IMM) UMDO, Instituto de Ciencia de los Materiales, Universidad de Valencia, P.O. Box 22085, 46071 Valencia, Spain

Received 16 January 2012; Revised 16 April 2012; Accepted 17 April 2012

Academic Editor: Sevan P. Davtyan

Copyright © 2012 H. Gordillo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Tomczak, D. Jańczewski, M. Han, and G. J. Vancso, “Designer polymer-quantum dot architectures,” Progress in Polymer Science, vol. 34, no. 5, pp. 393–430, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. M. A. Uddin and H. P. Chan, “Materials and process optimization in the reliable fabrication of polymer photonic devices,” Journal of Optoelectronics and Advanced Materials, vol. 10, no. 1, pp. 1–17, 2008. View at Google Scholar · View at Scopus
  3. M. A. Reilly, C. Marinelli, C. N. Morgan et al., “Rib waveguide dye-doped polymer amplifier with up to 26 dB optical gain at 625 nm,” Applied Physics Letters, vol. 85, no. 22, article no. 3, pp. 5137–5139, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. K. C. Tsang, C. Y. Wong, and E. Y. B. Pun, “Eu3+-doped planar optical polymer waveguide amplifiers,” IEEE Photonics Technology Letters, vol. 22, no. 14, pp. 1024–1026, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. L. Hu, H. Wu, L. Du, H. Ge, X. Chen, and N. Dai, “The effect of annealing and photoactivation on the optical transitions of band-band and surface trap states of colloidal quantum dots in PMMA,” Nanotechnology, vol. 22, no. 12, Article ID 125202, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Abargues, K. Abderrafi, E. Pedrueza et al., “Optical properties of different polymer thin films containing in situ synthesized Ag and Au nanoparticles,” New Journal of Chemistry, vol. 33, no. 8, pp. 1720–1725, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Amarasinghe, A. Ruseckas, G. A. Turnbull, and I. D. W. Samuel, “Organic semiconductor optical amplifiers,” Proceedings of the IEEE, vol. 97, no. 9, pp. 1637–1650, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. I. J. Kramer and E. H. Sargent, “Colloidal quantum dot photovoltaics: a path forward,” ACS Nano, vol. 5, no. 11, pp. 8506–8514, 2011. View at Publisher · View at Google Scholar
  9. G. Konstantatos and E. H. Sargent, “Nanostructured materials for photon detection,” Nature Nanotechnology, vol. 5, no. 6, pp. 391–400, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Gradess, R. Abargues, A. Habbou et al., “Localized surface plasmon resonance sensor based on Ag-PVA nanocomposite thin films,” Journal of Materials Chemistry, vol. 19, no. 48, pp. 9233–9240, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nature Photonics, vol. 4, no. 6, pp. 382–387, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. J. M. Ruano-López, M. Aguirregabiria, M. Tijero et al., “A new SU-8 process to integrate buried waveguides and sealed microchannels for a Lab-on-a-Chip,” Sensors and Actuators, B, vol. 114, no. 1, pp. 542–551, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. V. I. Klimov, “Nanocrystal quantum dots: from fundamental photophysics to multicolor lasing,” Los Alamos Science, no. 28, pp. 214–220, 2003. View at Google Scholar
  14. A. P. Alivisatos, “Perspectives on the physical chemistry of semiconductor nanocrystals,” Journal of Physical Chemistry, vol. 100, no. 31, pp. 13226–13239, 1996. View at Google Scholar · View at Scopus
  15. Y. Chan, J. S. Steckel, P. T. Snee et al., “Blue semiconductor nanocrystal laser,” Applied Physics Letters, vol. 86, no. 7, Article ID 073102, pp. 1–3, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. D. L. Ferreira, F. O. Silva, L. C. D. S. Viol et al., “Growth kinetics of CdTe colloidal nanocrystals,” Journal of Chemical Physics, vol. 131, no. 8, Article ID 084712, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Chen, J. Herrnsdorf, B. Guilhabert et al., “Colloidal quantum dot random laser,” Optics Express, vol. 19, no. 4, pp. 2996–3003, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. V. Sukhovatkin, S. Musikhin, I. Gorelikov et al., “Room-temperature amplified spontaneous emission at 1300 nm in solution-processed PbS quantum-dot films,” Optics Letters, vol. 30, no. 2, pp. 171–173, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. Z. Wu, Z. Mi, P. Bhattacharya, T. Zhu, and J. Xu, “Enhanced spontaneous emission at 1.55 μm from colloidal PbSe quantum dots in a Si photonic crystal microcavity,” Applied Physics Letters, vol. 90, no. 17, Article ID 171105, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. G. Chen, R. Rapaport, D. T. Fuchs et al., “Optical gain from InAs nanocrystal quantum dots in a polymer matrix,” Applied Physics Letters, vol. 87, no. 25, Article ID 251108, pp. 1–3, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Jasieniak, J. Pacifico, R. Signorini et al., “Luminescence and amplified stimulated emission in CdSe-ZnS-nanocrystal- doped TiO2 and ZrO2 waveguides,” Advanced Functional Materials, vol. 17, no. 10, pp. 1654–1662, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. V. M. Menon, S. Husaini, N. Valappil, and M. Luberto, “Photonic emitters and circuits based on colloidal quantum dot composites,” in 6th Quantum Dots, Particles, and Nanoclusters, vol. 72224 of Proceedings of SPIE, pp. 1–8, January 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. T. N. Smirnova, O. V. Sakhno, P. V. Yezhov, L. M. Kokhtych, L. M. Goldenberg, and J. Stumpe, “Amplified spontaneous emission in polymer-CdSe/ZnS-nanocrystal DFB structures produced by the holographic method,” Nanotechnology, vol. 20, no. 24, Article ID 245707, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. I. Surez, H. Gordillo, R. Abargues, S. Albert, and J. Martínez-Pastor, “Photoluminescence waveguiding in CdSe and CdTe QDs-PMMA nanocomposite films,” Nanotechnology, vol. 22, no. 43, Article ID 435202, 2011. View at Publisher · View at Google Scholar
  25. W. W. Yu and X. Peng, “Erratum: formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers,” Angewandte Chemie, vol. 46, no. 15, p. 2559, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chemistry of Materials, vol. 15, no. 14, pp. 2854–2860, 2003. View at Publisher · View at Google Scholar
  27. A. P. Demchenko, Advanced Fluorescence Reporters in Chemistry and Biology III: Applications in Sensing and Imaging, vol. 10, Springer, Berlin, Germany, 2011.
  28. H. Sharma, S. N. Sharma, G. Singh, and S. M. Shivaprasad, “Effect of ratios of Cd:Se in CdSe nanoparticles on optical edge shifts and photoluminescence properties,” Physica E, vol. 31, no. 2, pp. 180–186, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Tang, L. Brzozowski, D. A. R. Barkhouse et al., “Quantum dot photovoltaics in the extreme quantum confinement regime: the surface-chemical origins of exceptional air- and light-stability,” ACS Nano, vol. 4, no. 2, pp. 869–878, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. G. Lifante, Ed., Integrated Photonics, Fundamentals, Wiley & Sons, 2003.
  31. J. Clark and G. Lanzani, “Organic photonics for communications,” Nature Photonics, vol. 4, no. 7, pp. 438–446, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. R. D. Schaller, M. A. Petruska, and V. I. Klimov, “Tunable near-infrared optical gain and amplified spontaneous emission using pbse nanocrystals,” Journal of Physical Chemistry B, vol. 107, no. 50, pp. 13765–13768, 2003. View at Google Scholar · View at Scopus
  33. V. I. Klimov, A. A. Mikhailovsky, S. Xu et al., “Optical gain and stimulated emission in nanocrystal quantum dots,” Science, vol. 290, no. 5490, pp. 314–317, 2000. View at Publisher · View at Google Scholar · View at Scopus
  34. J. J. Jasieniak, I. Fortunati, S. Gardin et al., “Highly efficient amplified stimulated emission from CdSe-CdS-ZnS quantum dot doped waveguides with two-photon infrared optical pumping,” Advanced Materials, vol. 20, no. 1, pp. 69–73, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. Q. Sun, Y. A. Wang, L. S. Li et al., “Bright, multicoloured light-emitting diodes based on quantum dots,” Nature Photonics, vol. 1, no. 12, pp. 717–722, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Lee, V. C. Sundar, J. R. Heine, M. G. Bawendi, and K. F. Jensen, “Full color emission from II-VI semiconductor quantum dot-polymer composites,” Advanced Materials, vol. 12, no. 15, pp. 1102–1105, 2000. View at Publisher · View at Google Scholar
  37. S. Sapra, S. Mayilo, T. A. Klar, A. L. Rogach, and J. Feldmann, “Bright white-light emission from semiconductor nanocrystals: by chance and by design,” Advanced Materials, vol. 19, no. 4, pp. 569–572, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Park, J. Lee, and Y.-Y. Noh, “Optical and thermal properties of large-area OLED lightings with metallic grids,” Organic Electronics, vol. 13, no. 1, pp. 184–194, 2012. View at Publisher · View at Google Scholar
  39. P. Jorge, M. A. Martins, T. Trindade, J. L. Santos, and F. Farahi, “Optical fiber sensing using quantum dots,” Sensors, vol. 7, no. 12, pp. 3489–3534, 2007. View at Google Scholar · View at Scopus
  40. A. Bueno, I. Suárez, R. Abargues, S. Sales, and J. P. Martínez-Pastor, “Temperature sensor based on colloidal Quantum Dots-PMMA nanocompositewaveguides,” IEEE Sensors. In press.
  41. N. Pelletier, B. Bêche, E. Gaviot et al., “Single-mode rib optical waveguides on SOG/SU-8 polymer and integrated Mach-Zehnder for designing thermal sensors,” IEEE Sensors Journal, vol. 6, no. 3, pp. 565–570, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. B. S. Schmidt, A. H. J. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Optics Express, vol. 15, no. 22, pp. 14322–14334, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. http://www.microchem.com/Prod-SU8_KMPR.htm.
  44. C. B. Murray, C. R. Kagan, and M. G. Bawendi, “Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies,” Annual Review of Materials Science, vol. 30, pp. 545–610, 2000. View at Publisher · View at Google Scholar · View at Scopus