Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2013, Article ID 124354, 7 pages
http://dx.doi.org/10.1155/2013/124354
Research Article

Influence of Electric Field Coupling Model on the Simulated Performances of a GaN Based Planar Nanodevice

1Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
2State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China

Received 18 October 2013; Revised 18 December 2013; Accepted 19 December 2013

Academic Editor: Razali Ismail

Copyright © 2013 K. Y. Xu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. M. Song, “Electron ratchet effect in semiconductor devices and artificial materials with broken centrosymmetry,” Applied Physics A, vol. 75, no. 2, pp. 229–235, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. A. M. Song, P. Omling, L. Samuelson, W. Seifert, I. Shorubalko, and H. Zirath, “Room-temperature and 50 GHz operation of a functional nanomaterial,” Applied Physics Letters, vol. 79, no. 9, pp. 1357–1359, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Balocco, A. M. Song, M. Åberg et al., “Microwave detection at 110 GHz by nanowires with broken symmetry,” Nano Letters, vol. 5, no. 7, pp. 1423–1427, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. L. Worschech, F. Fischer, A. Forchel, M. Kamp, and H. Schweizer, “High frequency operation of nanoelectronic Y-branch at room temperature,” Japanese Journal of Applied Physics, vol. 40, no. 8 B, pp. L867–L868, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Balocco, M. Halsall, N. Q. Vinh, and A. M. Song, “THz operation of asymmetric-nanochannel devices,” Journal of Physics Condensed Matter, vol. 20, no. 38, Article ID 384203, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Åberg, J. Saijets, A. M. Song, and M. Prunnila, “Simulation and modeling of self-switching devices,” Physica Scripta, vol. T114, p. 123, 2004. View at Publisher · View at Google Scholar
  7. M. Åberg and J. Saijets, “DC and AC characteristics and modeling of Si SSD-nano devices,” in Proceedings of the European Conference on Circuit Theory and Design, pp. 15–18, irl, September 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Mateos, B. G. Vasallo, D. Pardo, and T. González, “Operation and high-frequency performance of nanoscale unipolar rectifying diodes,” Applied Physics Letters, vol. 86, no. 21, Article ID 212103, 3 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. I. Iñiguez-de-la-Torre, J. Mateos, D. Pardo, and T. González, “Monte Carlo analysis of noise spectra in self-switching nanodiodes,” Journal of Applied Physics, vol. 103, no. 2, Article ID 024502, 2008. View at Publisher · View at Google Scholar
  10. I. Iñiguez-de-la-Torre, J. Mateos, D. Pardo, A. M. Song, and T. González, “Noise and terahertz rectification linked by geometry in planar asymmetric nanodiodes,” Applied Physics Letters, vol. 94, no. 9, Article ID 093512, 2009. View at Publisher · View at Google Scholar
  11. K. Y. Xu, X. F. Lu, A. M. Song, and G. Wang, “Terahertz harmonic generation using a planar nanoscale unipolar diode at zero bias,” Applied Physics Letters, vol. 92, no. 16, Article ID 163503, 3 pages, 2008. View at Publisher · View at Google Scholar
  12. K. Y. Xu, J. W. Xiong, A. M. Song, and G. Wang, “Effects of three-dimensional electric-field coupling on a side-gated nanotransistor,” Semiconductor Science and Technology, vol. 26, no. 9, Article ID 095026, 6 pages, 2011. View at Publisher · View at Google Scholar
  13. T. Sadi, F. Dessenne, and J.-L. Thobel, “Three-dimensional Monte Carlo study of three-terminal junctions based on InGaAs/InAlAs heterostructures,” Journal of Applied Physics, vol. 105, no. 5, Article ID 053707, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Sadi and J.-L. Thobel, “Analysis of the high-frequency performance of InGaAs/InAlAs nanojunctions using a three-dimensional Monte Carlo simulator,” Journal of Applied Physics, vol. 106, no. 8, Article ID 083709, 2009. View at Publisher · View at Google Scholar
  15. T. Sadi and J.-L. Thobel, “Study of the high-frequency performance of III-As nanojunctions using a three-dimensional ensemble Monte Carlo model,” Journal of Physics: Conference Series, vol. 193, Article ID 012017, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. I. Iñiguez-de-la-Torre, T. González, D. Pardo et al., “Three-terminal junctions operating as mixers, frequency doublers and detectors: a broad-band frequency numerical and experimental study at room temperature,” Semiconductor Science and Technology, vol. 25, no. 12, Article ID 125013, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Y. Xu, G. Wang, and A. M. Song, “Gunn oscillations in a self-switching nanodiode,” Applied Physics Letters, vol. 93, no. 23, Article ID 233506, 2008. View at Publisher · View at Google Scholar
  18. A. Íñiguez-de-la-Torre, I. Íñiguez-de-la-Torre, J. Mateos et al., “Searching for THz Gunn oscillations in GaN planar nanodiodes,” Journal of Applied Physics, vol. 111, no. 11, Article ID 113705, 2012. View at Publisher · View at Google Scholar
  19. A. M. Song, M. Missous, P. Omling, A. R. Peaker, L. Samuelson, and W. Seifert, “Unidirectional electron flow in a nanometer-scale semiconductor channel: a self-switching device,” Applied Physics Letters, vol. 83, no. 9, pp. 1881–1883, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Jacoboni and P. Lugli, The Monte Carlo Method for Semiconductor Device Simulation, Springer, New York, NY, USA, 1989.
  21. K. Y. Xu, X. F. Lu, G. Wang, and A. M. Song, “Strong spatial dependence of electron velocity, density, and intervalley scattering in an asymmetric nanodevice in the nonlinear transport regime,” IEEE Transactions on Nanotechnology, vol. 7, no. 4, pp. 451–457, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Y. Xu, X. F. Lu, A. M. Song, and G. Wang, “Enhanced terahertz detection by localized surface plasma oscillations in a nanoscale unipolar diode,” Journal of Applied Physics, vol. 103, Article ID 113708, 2008. View at Publisher · View at Google Scholar
  23. N. Ma, B. Shen, F. J. Xu et al., “Current-controlled negative differential resistance effect induced by Gunn-type instability in n-type GaN epilayers,” Applied Physics Letters, vol. 96, no. 24, Article ID 242104, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. I. Íñiguez-de-la-Torre, J. Mateos, T. González et al., “Influence of the surface charge on the operation of ballistic T-branch junctions: a self-consistent model for Monte Carlo simulations,” Semiconductor Science and Technology, vol. 22, no. 6, pp. 663–670, 2007. View at Publisher · View at Google Scholar · View at Scopus