Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2013, Article ID 170201, 10 pages
http://dx.doi.org/10.1155/2013/170201
Research Article

Polymeric Nanosuspensions for Enhanced Dissolution of Water Insoluble Drugs

1Mawson Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
2School of Engineering, University of South Australia, Mawson Lakes, SA 5095, Australia
3Ian Wark Research Institute, University of South Australia, Mawson Lakes, Adelaide, SA 5095, Australia

Received 2 August 2013; Accepted 1 September 2013

Academic Editor: Haifeng Chen

Copyright © 2013 Roya Yadollahi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. X. Pu, J. Sun, M. Li, and Z. He, “Formulation of nanosuspensions as a new approach for the delivery of poorly soluble drugs,” Current Nanoscience, vol. 5, no. 4, pp. 417–427, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. H. Chen, C. Khemtong, X. Yang, X. Chang, and J. Gao, “Nanonization strategies for poorly water-soluble drugs,” Drug Discovery Today, vol. 16, no. 7-8, pp. 354–360, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. Kawabata, K. Wada, M. Nakatani, S. Yamada, and S. Onoue, “Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications,” International Journal of Pharmaceutics, vol. 420, no. 1, pp. 1–10, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. R. H. Muller, R. Becker, B. Kruss, and K. Peters, “Pharmaceutical nanosuspensions for medicament administration as systems with increased saturation solubility and rate of solution,” US Patent 5858410, 1999, http://www.google.com.au/patents/US5858410.
  5. G. Pifferi and P. Restani, “The safety of pharmaceutical excipients,” Farmaco, vol. 58, no. 8, pp. 541–550, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. G. C. S. Rao, M. S. Kumar, N. Mathivanan, and M. E. B. Rao, “Nanosuspensions as the most promising approach in nanoparticulate drug delivery systems,” Pharmazie, vol. 59, no. 1, pp. 5–9, 2004. View at Google Scholar · View at Scopus
  7. V. B. Patravale, A. A. Date, and R. M. Kulkarni, “Nanosuspensions: a promising drug delivery strategy,” Journal of Pharmacy and Pharmacology, vol. 56, no. 7, pp. 827–840, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. R. O. Williams III, A. B. Watts, and D. A. Miller, Formulating Poorly Water Soluble Drugs, Springer, New York, NY, USA, 2012.
  9. V. Kharb, M. Bhatia, H. Dureja, and D. Kaushik, “Nanoparticle technology for the delivery of poorly water-soluble drugs,” Pharmaceutical Technology, vol. 30, no. 2, pp. 82–92, 2006. View at Google Scholar · View at Scopus
  10. C. M. Keck and R. H. Müller, “Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 62, no. 1, pp. 3–16, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Moser, K. Kriwet, Y. N. Kalia, and R. H. Guy, “Stabilization of supersaturated solutions of a lipophilic drug for dermal delivery,” International Journal of Pharmaceutics, vol. 224, no. 1-2, pp. 169–176, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. S. L. Raghavan, A. Trividic, A. F. Davis, and J. Hadgraft, “Crystallization of hydrocortisone acetate: influence of polymers,” International Journal of Pharmaceutics, vol. 212, no. 2, pp. 213–221, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. S. L. Raghavan, K. Schuessel, A. Davis, and J. Hadgraft, “Formation and stabilisation of triclosan colloidal suspensions using supersaturated systems,” International Journal of Pharmaceutics, vol. 261, no. 1-2, pp. 153–158, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. R. G. Strickley, “Solubilizing excipients in oral and injectable formulations,” Pharmaceutical Research, vol. 21, no. 2, pp. 201–230, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. U. Kumprakob, J. Kawakami, and I. Adachi, “Permeation enhancement of ketoprofen using a supersaturated system with antinucleant polymers,” Biological and Pharmaceutical Bulletin, vol. 28, no. 9, pp. 1684–1688, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. M. C. Lamas, L. Villaggi, I. Nocito et al., “Development of parenteral formulations and evaluation of the biological activity of the trypanocide drug benznidazole,” International Journal of Pharmaceutics, vol. 307, no. 2, pp. 239–243, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. N. Leveque, S. L. Raghavan, M. E. Lane, and J. Hadgraft, “Use of a molecular form technique for the penetration of supersaturated solutions of salicylic acid across silicone membranes and human skin in vitro,” International Journal of Pharmaceutics, vol. 318, no. 1-2, pp. 49–54, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Iervolino, B. Cappello, S. L. Raghavan, and J. Hadgraft, “Penetration enhancement of ibuprofen from supersaturated solutions through human skin,” International Journal of Pharmaceutics, vol. 212, no. 1, pp. 131–141, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Iervolino, S. L. Raghavan, and J. Hadgraft, “Membrane penetration enhancement of ibuprofen using supersaturation,” International Journal of Pharmaceutics, vol. 198, no. 2, pp. 229–238, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Nair, S. Gonen, and S. W. Hoag, “Influence of polyethylene glycol and povidone on the polymorphic transformation and solubility of carbamazepine,” International Journal of Pharmaceutics, vol. 240, no. 1-2, pp. 11–22, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Sekikawa, M. Nakano, and T. Arita, “Inhibitory effect of polyvinylpyrrolidone on the crystallization of drugs,” Chemical and Pharmaceutical Bulletin, vol. 26, no. 1, pp. 118–126, 1978. View at Google Scholar · View at Scopus
  22. E. Karavas, E. Georgarakis, and D. Bikiaris, “Application of PVP/HPMC miscible blends with enhanced mucoadhesive properties for adjusting drug release in predictable pulsatile chronotherapeutics,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 64, no. 1, pp. 115–126, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. S. C. Sweetman, Martindale: The Complete Drug Reference, Pharmaceutical Press, 2007.
  24. C. Jamaty, B. Bailey, A. Larocque, E. Notebaert, K. Sanogo, and J. M. Chauny, “Lipid emulsions in the treatment of acute poisoning: a systematic review of human and animal studies,” Clinical Toxicology, vol. 48, no. 1, pp. 1–27, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. S. L. Ali and K. Florey, Analytical Profiles of Drug Substances, Academic Press, San Diego, Calif, USA, 1989.
  26. A. F. El-Kattan, C. S. Asbill, N. Kim, and B. B. Michniak, “The effects of terpene enhancers on the percutaneous permeation of drugs with different lipophilicities,” International Journal of Pharmaceutics, vol. 215, no. 1-2, pp. 229–240, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Leuner and J. Dressman, “Improving drug solubility for oral delivery using solid dispersions,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 50, no. 1, pp. 47–60, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. P. K. Lakshmi, M. K. Kumar, A. Sridharan, and S. Bhaskaran, “Formulation and evaluation of ibuprofen topical gel: a novel approach for penetration enhancement,” International Journal of Applied Pharmaceutics, vol. 3, no. 3, pp. 25–30, 2011. View at Google Scholar · View at Scopus
  29. A. Nayak and A. Jain, “In vitro and in vivo study of poly(ethylene glycol) conjugated ibuprofen to extend the duration of action,” Scientia Pharmaceutica, vol. 79, no. 2, pp. 359–373, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. A. F. Davis and J. Hadgraft, “Effect of supersaturation on membrane transport: 1. Hydrocortisone acetate,” International Journal of Pharmaceutics, vol. 76, no. 1-2, pp. 1–8, 1991. View at Publisher · View at Google Scholar · View at Scopus
  31. P. Costa and J. M. S. Lobo, “Modeling and comparison of dissolution profiles,” European Journal of Pharmaceutical Sciences, vol. 13, no. 2, pp. 123–133, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. N. A. Williams and G. P. Polli, “The lyophilization of pharmaceuticals: a literature review,” Journal of Parenteral Science and Technology, vol. 38, no. 2, pp. 48–60, 1984. View at Google Scholar · View at Scopus
  33. M. J. Pikal, S. Shah, M. L. Roy, and R. Putman, “The secondary drying stage of freeze drying: drying kinetics as a function of temperature and chamber pressure,” International Journal of Pharmaceutics, vol. 60, no. 3, pp. 203–207, 1990. View at Publisher · View at Google Scholar · View at Scopus
  34. X. Tang and M. J. Pikal, “Design of freeze-drying processes for pharmaceuticals: practical advice,” Pharmaceutical Research, vol. 21, no. 2, pp. 191–200, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. N. Nyamweya and S. W. Hoag, “Assessment of polymer-polymer interactions in blends of HPMC and film forming polymers by modulated temperature differential scanning calorimetry,” Pharmaceutical Research, vol. 17, no. 5, pp. 625–631, 2000. View at Publisher · View at Google Scholar · View at Scopus
  36. Y. Javadzadeh, B. Jafari-Navimipour, and A. Nokhodchi, “Liquisolid technique for dissolution rate enhancement of a high dose water-insoluble drug (carbamazepine),” International Journal of Pharmaceutics, vol. 341, no. 1-2, pp. 26–34, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. T. Chatzaeiaoannou, Quantitative Calculations in Pharmaceutical Practice and Research, VCH Publishers, New York, NY, USA, 1993.
  38. M. H. Shoaib, J. Tazeen, H. A. Merchant, and R. I. Yousuf, “Evaluation of drug release kinetics from ibuprofen matrix tablets using HPMC,” Pakistan Journal of Pharmaceutical Sciences, vol. 19, no. 2, pp. 119–124, 2006. View at Google Scholar · View at Scopus
  39. S. Dash, P. N. Murthy, L. Nath, and P. Chowdhury, “Kinetic modeling on drug release from controlled drug delivery systems,” Acta Poloniae Pharmaceutica, vol. 67, no. 3, pp. 217–223, 2010. View at Google Scholar · View at Scopus
  40. A. Hixson and J. Crowell, “Dependence of reaction velocity upon surface and agitation,” Industrial and Engineering Chemistry, vol. 23, no. 8, pp. 923–931, 1931. View at Google Scholar
  41. S. K. Dordunoo, J. L. Ford, and M. H. Rubinstein, “Preformulation studies on solid dispersions containing triamterene or temazepam in polyethylene glycols or gelucire 44/14 for liquid filling of hard gelatin capsules,” Drug Development and Industrial Pharmacy, vol. 17, no. 12, pp. 1685–1713, 1991. View at Google Scholar · View at Scopus
  42. J. M. Ginés, M. D. Veiga, M. J. Arias, and A. M. Rabasco, “Elaboration and thermal study of interactions between cinnarizine and gelucire 53/10 physical mixtures and solid dispersions,” International Journal of Pharmaceutics, vol. 126, no. 1-2, pp. 287–291, 1995. View at Publisher · View at Google Scholar · View at Scopus
  43. G. R. Lloyd, D. Q. M. Craig, and A. Smith, “An investigation into the melting behavior of binary mixes and solid dispersions of paracetamol and PEG 4000,” Journal of Pharmaceutical Sciences, vol. 86, no. 9, pp. 991–996, 1997. View at Publisher · View at Google Scholar · View at Scopus
  44. D. Q. M. Craig, “Polyethylene glycols and drug release,” Drug Development and Industrial Pharmacy, vol. 16, no. 17, pp. 2501–2526, 1990. View at Google Scholar · View at Scopus