Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2013, Article ID 170913, 8 pages
http://dx.doi.org/10.1155/2013/170913
Research Article

Inclusion Phenomena between the β-Cyclodextrin Chiral Selector and Trp-D,L, and Its Use on the Assembly of Solid Membranes

College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China

Received 3 May 2013; Accepted 7 July 2013

Academic Editor: Hamed Bahmanpour

Copyright © 2013 Hong Meng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. M. Maier, P. Franco, and W. Lindner, “Separation of enantiomers: needs, challenges, perspectives,” Journal of Chromatography A, vol. 906, no. 1-2, pp. 3–33, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. Z. J. Li and D. J. W. Grant, “Relationship between physical properties and crystal structures of chiral drugs,” Journal of Pharmaceutical Sciences, vol. 86, no. 10, pp. 1073–1078, 1997. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Pietraszkiewicz, M. Koźbiał, and O. Pietraszkiewicz, “Chiral discrimination of amino acids and their potassium or sodium salts by optically active crown ether derived from D-mannose,” Journal of Membrane Science, vol. 138, no. 1, pp. 109–113, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Maximini, H. Chmiel, H. Holdik, and N. W. Maier, “Development of a supported liquid membrane process for separating enantiomers of N-protected amino acid derivatives,” Journal of Membrane Science, vol. 276, no. 1-2, pp. 221–231, 2006. View at Publisher · View at Google Scholar
  5. E. M. van der Ent, K. Van't Riet, J. T. F. Keurentjes, and A. van der Padt, “Design criteria for dense permeation-selective membranes for enantiomer separations,” Journal of Membrane Science, vol. 185, no. 2, pp. 207–221, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Romero and A. L. Zydney, “Chiral separations using ultrafiltration with a stereoselective binding agent,” Separation Science and Technology, vol. 36, no. 7, pp. 1575–1594, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Singh, P. G. Ingole, H. Bhrambhatt, A. Bhattachayra, and H. C. Bajaj, “Preparation, characterization and performance evaluation of chiral selective composite membranes,” Separation and Purification Technology, vol. 78, no. 2, pp. 138–146, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Singh, P. G. Ingole, H. C. Bajaj, and H. Gupta, “Preparation, characterization and application of β-cyclodextrin-glutaraldehyde crosslinked membrane for the enantiomeric separation of amino acids,” Desalination, vol. 298, pp. 13–21, 2012. View at Publisher · View at Google Scholar
  9. E. Iritani, N. Katagiri, T. Kawabata, and Y. Takaishi, “Chiral separation of tryptophan by single-pass affinity inclined ultrafiltration using hollow fiber membrane module,” Separation and Purification Technology, vol. 64, no. 3, pp. 337–344, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Fanali, “Enantioselective determination by capillary electrophoresis with cyclodextrins as chiral selectors,” Journal of Chromatography A, vol. 875, no. 1-2, pp. 89–122, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. E. Schneiderman and A. M. Stalcup, “Cyclodextrins: a versatile tool in separation science,” Journal of Chromatography B, vol. 745, no. 1, pp. 83–102, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. M. D. C. K. V. Ramos, L. H. P. Teixeira, F. R. de Aquino Neto, E. J. Barreiro, C. R. Rodrigues, and C. A. M. Fraga, “Chiral separation of γ-butyrolactone derivatives by gas chromatography on 2,3-di-O-methyl-6-O-tert-butyldimethylsilyl-β-cyclodextrin,” Journal of Chromatography A, vol. 985, no. 1-2, pp. 321–331, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Shitangkoon, J. Yanchinda, and J. Shiowatana, “Thermodynamic study on the gas chromatographic separation of the enantiomers of aromatic alcohols using heptakis(2,3-di-O-methyl-6-O-tert-butyldimethylsilyl)-β-cyclodextrin as a stationary phase,” Journal of Chromatography A, vol. 1049, no. 1-2, pp. 223–226, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Baudequin, J. Baudoux, J. Levillain, D. Cahard, A. Gaumont, and J. Plaquevent, “Ionic liquids and chirality: opportunities and challenges,” Tetrahedron Asymmetry, vol. 14, no. 20, pp. 3081–3093, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. D. K. Bwambok, H. M. Marwani, V. E. Fernand et al., “Synthesis and characterization of novel chiral ionic liquids and investigation of their enantiomeric recognition properties,” Chirality, vol. 20, no. 2, pp. 151–158, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. F. Tang, Q. L. Zhang, D. D. Ren, Z. Nie, Q. Liu, and S. Z. Yao, “Functional amino acid ionic liquids as solvent and selector in chiral extraction,” Journal of Chromatography A, vol. 1217, no. 28, pp. 4669–4674, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. W. T. Bi, M. L. Tian, and K. H. Row, “Chiral separation and determination of ofloxacin enantiomers by ionic liquid-assisted ligand-exchange chromatography,” Analyst, vol. 136, no. 2, pp. 379–387, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. G. Absalan, Y. Alipour, Z. Rezaei, and M. Akhond, “Determination of enantiomer compositions of propranolol enantiomers by chiral ionic liquid as a chiral selector and the UV-assisted spectrophotometric method,” Analytical Methods, vol. 4, no. 8, pp. 2283–2287, 2012. View at Publisher · View at Google Scholar
  19. J. Yu, L. H. Zuo, H. J. Liu, L. J. Zhang, and X. J. Guo, “Synthesis and application of a chiral ionic liquid functionalized b-cyclodextrin as a chiral selector in capillary electrophoresis,” Biomedical Chromatography, vol. 27, no. 8, pp. 1027–1033, 2013. View at Publisher · View at Google Scholar
  20. Y. M. Lee, S. Y. Nam, and D. J. Woo, “Pervaporation of ionically surface crosslinked chitosan composite membranes for water-alcohol mixtures,” Journal of Membrane Science, vol. 133, no. 1, pp. 103–110, 1997. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Matsuoka, N. Kanda, Y. M. Lee, and A. Higuchi, “Chiral separation of phenylalanine in ultrafiltration through DNA-immobilized chitosan membranes,” Journal of Membrane Science, vol. 280, no. 1-2, pp. 116–123, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. J. H. Kim, J. H. Kim, J. Jegal, and K. H. Lee, “Optical resolution of α-amino acids through enantioselective polymeric membranes based on polysaccharides,” Journal of Membrane Science, vol. 213, no. 1-2, pp. 273–283, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. H. D. Wang, L. Y. Chu, H. Song, J. P. Yang, R. Xie, and M. Yang, “Preparation and enantiomer separation characteristics of chitosan/β-cyclodextrin composite membranes,” Journal of Membrane Science, vol. 297, no. 1-2, pp. 262–270, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Pralhad and K. Rajendrakumar, “Study of freeze-dried quercetin-cyclodextrin binary systems by DSC, FT-IR, X-ray diffraction and SEM analysis,” Journal of Pharmaceutical and Biomedical Analysis, vol. 34, no. 2, pp. 333–339, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Wang, Y. P. Cao, B. G. Sun, and C. T. Wang, “Characterisation of inclusion complex of trans-ferulic acid and hydroxypropyl-β-cyclodextrin,” Food Chemistry, vol. 124, no. 3, pp. 1069–1075, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. L. X. Song, C. F. Teng, and Y. Yang, “Preparation and characterization of the solid inclusion compounds of α-, β-cyclodextrin with phenylalanine (D-, L- and DL-Phe) and tryptophan (D-, L- and DL-Trp),” Journal of Inclusion Phenomena, vol. 54, no. 3-4, pp. 221–232, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. W. H. Tang, I. W. Muderawan, T. T. Ong, and S. C. Ng, “Facile synthesis of positively charged monosubstituted α- and γ-cyclodextrins for chiral resolution of anionic racemates,” Tetrahedron Asymmetry, vol. 18, no. 13, pp. 1548–1553, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. F. Veiga, J. J. C. Teixeira-Dias, F. Kedzierewicz, A. Sousa, and P. Maincent, “Inclusion complexation of tolbutamide with β-cyclodextrin and hydroxypropyl-β-cyclodextrin,” International Journal of Pharmaceutics, vol. 129, no. 1-2, pp. 63–71, 1996. View at Publisher · View at Google Scholar · View at Scopus