Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2013, Article ID 275946, 6 pages
http://dx.doi.org/10.1155/2013/275946
Research Article

3-Dimensional Microorifice Fabricated Utilizing Single Undercut Etching Process for Producing Ultrasmall Water and Chitosan Droplets

1Department of Mechanical and Electromechanical Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
2Department of Biological Science and Technology, I-Shou University, Kaohsiung 824, Taiwan

Received 10 September 2013; Accepted 5 October 2013

Academic Editor: Liang-Wen Ji

Copyright © 2013 Che-Hsin Lin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. T. Guo, A. Rotem, J. A. Heyman, and D. A. Weitz, “Droplet microfluidics for high-throughput biological assays,” Lab on a Chip, vol. 12, no. 12, pp. 2146–2155, 2012. View at Publisher · View at Google Scholar
  2. D. J. Harrison, K. Fluri, K. Seiler, Z. Fan, C. S. Effenhauser, and A. Manz, “Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip,” Science, vol. 261, no. 5123, pp. 895–897, 1993. View at Google Scholar · View at Scopus
  3. T. Glawdel, C. Elbuken, and C. L. Ren, “Droplet formation in microfluidic T-junction generators operating in the transitional regime. I. Experimental observations,” Physical Review E, vol. 85, no. 1, Article ID 016322, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Garstecki, M. J. Fuerstman, H. A. Stone, and G. M. Whitesides, “Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up,” Lab on a Chip, vol. 6, no. 3, pp. 437–446, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. J. H. Xu, S. W. Li, J. Tán, Y. J. Wang, and G. S. Luo, “Preparation of highly monodisperse droplet in a T-junction microfluidic device,” AIChE Journal, vol. 52, no. 9, pp. 3005–3010, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. J. H. Xu, S. W. Li, J. Tan, and G. S. Luo, “Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping,” Microfluidics and Nanofluidics, vol. 5, no. 6, pp. 711–717, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. C. H. Lan, S. W. Lin, and C. H. Lin, “Microfluidic T-junction with an undercut orifice to generate ultra-small droplets,” in Proceedings of the 5th Asia-Pacific Conference on Transducers and Micro-Nano Technology (APCOT '10), Perth, Australia, 2010.
  8. C. Cramer, P. Fischer, and E. J. Windhab, “Drop formation in a co-flowing ambient fluid,” Chemical Engineering Science, vol. 59, no. 15, pp. 3045–3058, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. G. G. Su, P. W. Longest, and R. M. Pidaparti, “A novel micropump droplet generator for aerosol drug delivery: design simulations,” Biomicrofluidics, vol. 4, no. 4, Article ID 044108, 2010. View at Publisher · View at Google Scholar
  10. S.-K. Hsiung, C.-T. Chen, and G.-B. Lee, “Micro-droplet formation utilizing microfluidic flow focusing and controllable moving-wall chopping techniques,” Journal of Micromechanics and Microengineering, vol. 16, no. 11, article 022, pp. 2403–2410, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Glawdel and C. L. Ren, “Droplet formation in microfluidic T-junction generators operating in the transitional regime. III. Dynamic surfactant effects,” Physical Review E, vol. 86, no. 2, Article ID 026308, 2012. View at Google Scholar
  12. C.-H. Lin, L.-M. Fu, and Y.-S. Chien, “Microfluidic T-form mixer utilizing switching electroosmotic flow,” Analytical Chemistry, vol. 76, no. 18, pp. 5265–5272, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. H.-W. Wu, Y.-C. Huang, C.-L. Wu, and G.-B. Lee, “Exploitation of a microfluidic device capable of generating size-tunable droplets for gene delivery,” Microfluidics and Nanofluidics, vol. 7, no. 1, pp. 45–56, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. C.-H. Lin, C.-H. Tsai, and L.-M. Fu, “A rapid three-dimensional vortex micromixer utilizing self-rotation effects under low Reynolds number conditions,” Journal of Micromechanics and Microengineering, vol. 15, no. 5, pp. 935–943, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. C.-H. Lin, G.-B. Lee, Y.-H. Lin, and G.-L. Chang, “A fast prototyping process for fabrication of microfluidic systems on soda-lime glass,” Journal of Micromechanics and Microengineering, vol. 11, no. 6, pp. 726–732, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Mark, S. Haeberle, R. Zengerle, J. Ducree, and G. T. Vladisavljević, “Manufacture of chitosan microbeads using centrifugally driven flow of gel-forming solutions through a polymeric micronozzle,” Journal of Colloid and Interface Science, vol. 336, no. 2, pp. 634–641, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. C.-H. Yang, Y.-S. Lin, K.-S. Huang et al., “Microfluidic emulsification and sorting assisted preparation of monodisperse chitosan microparticles,” Lab on a Chip, vol. 9, no. 1, pp. 145–150, 2009. View at Publisher · View at Google Scholar · View at Scopus