Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2013, Article ID 321261, 11 pages
Research Article

Feasibility Assessment of Thermal Management System for Green Power Sources Using Nanofluid

Department of Industrial Education, National Taiwan Normal University, No. 162, Sec. 1, He-ping East Road, Section 1, Da-an District, Taipei City 10610, Taiwan

Received 20 July 2013; Accepted 2 August 2013

Academic Editor: Yanbao Zhao

Copyright © 2013 Yi-Hsuan Hung et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


A thermal management system using alumina (Al2O3)/water as the nanofluid for green power sources was experimentally assessed in this paper. Basic thermal principles and formulas were utilized to evaluate the performance of an air-cooled heat exchanger. The Al2O3/water nanofluid was produced at the concentrations of 0.5, 1.0, and 1.5 wt.%. The testing conditions of this experiments were above three concentrations, five coolant flow rates (0.8, 1.2, 1.6, 2.0, and 2.4 L/min.), and three heating powers (50, 100, and 150 W). Firstly, basic properties of nanoparticles were analyzed. Fundamental relationships of the Al2O3/water nanofluid with respect to temperatures and concentrations were measured such as: viscosity, density, and specific heat. Next, an innovative concept named efficiency factor (EF) was proposed to quantitatively evaluate the thermal system performance. The enhancement of thermal system performance compared with distilled water was then defined as an efficiency factor ratio ( ). The experimental results demonstrated that the efficiency factor ratios were optimal at low flow rate (0.8 L/min.) and low concentration (0.5%). Values of were all below 1.0 at high flow rates (1.2–2.4 L/min.). This research points out the direction of optimizing a thermal management system for green energy sources in the near future.