Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2013 (2013), Article ID 328093, 16 pages
http://dx.doi.org/10.1155/2013/328093
Review Article

The Development of Silicon Nanowire as Sensing Material and Its Applications

1Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
2Department of Chemistry and Biology, Centre for Defense Foundation Studies, National Defense University of Malaysia, Sungai Besi Camp, 57000 Kuala Lumpur, Malaysia
3Department of Chemistry, Faculty of Science, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia

Received 4 September 2013; Accepted 3 November 2013

Academic Editor: Artde Donald Kin-Tak Lam

Copyright © 2013 Jahwarhar Izuan Abdul Rashid et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Wang, A. H. Dewilde, J. Zhang et al., “A living cell quartz crystal microbalance biosensor for continuous monitoring of cytotoxic responses of macrophages to single-walled carbon nanotubes,” Particle and Fibre Toxicology, vol. 8, article 4, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. Q. Zhang, J. Ding, L. Kou, and Q. Wei, “Potentiometric flow biosensor based on ammonia-oxidizing bacteria for the detection of toxicity in water,” Sensors, vol. 13, pp. 6936–6945, 2013. View at Google Scholar
  3. X. Xu and Y. Ying, “Microbial biosensors for environmental monitoring and food analysis,” Food Reviews International, vol. 27, no. 3, pp. 300–329, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Lukasiak, C. A. Georgiou, K. Olsen, and D. G. Georgakopoulos, “Development of an L-rhamnose bioluminescent microbial biosensor for analysis of food ingredients,” European Food Research Technology, vol. 235, pp. 573–579, 2012. View at Google Scholar
  5. J. Yuan, R. Duan, H. Yang, X. Luo, and M. Xi, “Detection of serum human epididymis secretory protein in patients with ovarian cancer using a label-free biosensor based on localized surface plasmon resonance,” International Journal of Nanomedicine, vol. 7, pp. 2921–2928, 2012. View at Google Scholar
  6. Y. Cao, J. Yu, B. Bo, Y. Shu, and G. Li, “A simple and general approach to assay protease activity with electrochemical technique,” Biosensors and Bioelectronics, vol. 45, pp. 1–5, 2013. View at Google Scholar
  7. J. Y. Wu, C. L. Tseng, Y. K. Wang, Y. Yu, K. L. Ou, and C. C. Wu, “Detecting interleukin-1b genes using a N2O plasma modified silicon nanowire biosensor,” Journal of Experimental and Clinical Medicine, vol. 5, pp. 12–16, 2013. View at Google Scholar
  8. G. L. Turdean, “Design and development of biosensors for the detection of heavy metal toxicity,” International Journal of Electrochemistry, vol. 2011, Article ID 343125, 15 pages, 2011. View at Publisher · View at Google Scholar
  9. Y. Huang, L. Wieck, and S. Tao, “Development and evaluation of optical fiber NH3 sensors for application in air quality monitoring,” Atmospheric Environment, vol. 66, pp. 1–7, 2013. View at Google Scholar
  10. M. Minunni, S. Tombelli, M. Mascini, A. Bilia, M. C. Bergonzi, and F. F. Vincieri, “An optical DNA-based biosensor for the analysis of bioactive constituents with application in drug and herbal drug screening,” Talanta, vol. 65, no. 2, pp. 578–585, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. L. G. Zamfir, L. Rotariu, and C. Bala, “Acetylcholinesterase biosensor for carbamate drugs based on tetrathiafulvalenetetracyanoquinodimethane/ionic liquid conductive gels,” Biosensors and Bioelectronics, vol. 46, pp. 61–67, 2013. View at Google Scholar
  12. A. Kaur, M. Verma, and S. Kamaljit, “Biosensor and its clinical application,” International Journal of Advanced Research, vol. 1, pp. 108–118, 2013. View at Google Scholar
  13. A. Zhang, S. You, C. Soci, Y. Liu, D. Wang, and Y.-H. Lo, “Silicon nanowire detectors showing phototransistive gain,” Applied Physics Letters, vol. 93, no. 12, Article ID 121110, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. F. Lucarelli, S. Tombelli, M. Minunni, G. Marrazza, and M. Mascini, “Electrochemical and piezoelectric DNA biosensors for hybridisation detection,” Analytica Chimica Acta, vol. 609, no. 2, pp. 139–159, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Lei, W. Chen, and A. Mulchandani, “Microbial biosensors,” Analytica Chimica Acta, vol. 568, no. 1-2, pp. 200–210, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Rodriguez-Mozaz, M.-P. Marco, M. J. Lopez De Alda, and D. Barceló, “Biosensors for environmental applications: future development trends,” Pure and Applied Chemistry, vol. 76, no. 4, pp. 723–752, 2004. View at Google Scholar · View at Scopus
  17. E. B. Setterington and E. C. Alocilja, “Electrochemical biosensor for rapid and sensitive detection of magnetically extracted bacterial pathogens,” Biosensors, vol. 2, pp. 15–31, 2012. View at Google Scholar
  18. K. Chen, Z. L. Zhang, Y. M. Liang, and W. Liu, “A graphene-based electrochemical sensor for rapid determination of phenols in water,” Sensors, vol. 13, pp. 6204–6216, 2013. View at Google Scholar
  19. M. B. Lerner, J. Daileya, D. Brisson, and A. T. Johnson, “Detecting Lyme disease using antibody-functionalized single-walled carbon nanotube transistors,” Biosensors and Bioelectronics, vol. 45, pp. 163–167, 2013. View at Google Scholar
  20. X. Xu, X. Liu, Y. Li, and Y. Ying, “A simple and rapid optical biosensor for detection of aflatoxin B1 based on competitive dispersion of gold nanorods,” Biosensors and Bioelectronics, vol. 47, pp. 361–367, 2013. View at Google Scholar
  21. L. Su, L. Zou, C. C. Fong et al., “Detection of cancer biomarkers by piezoelectric biosensor using PZT ceramic resonator as the transducer,” Biosensors and Bioelectronics, vol. 46, pp. 155–161, 2013. View at Google Scholar
  22. Y. Zheng, X. Liu, Y. Ma, Y. Xu, and F. Xu, “Research and development of a new versatile thermal biosensor,” Sensors, vol. 9, pp. 1033–1053, 2009. View at Google Scholar
  23. X. Zhang, Q. Guo, and D. Cui, “Recent advances in nanotechnology applied to biosensors,” International Journal of Advanced Research, vol. 1, pp. 108–118, 2009. View at Google Scholar
  24. Y. Umasankar and S.-M. Chen, “A review on the electrochemical sensors and biosensors composed of nanowires as sensing material,” Sensors, vol. 8, no. 1, pp. 290–313, 2008. View at Google Scholar · View at Scopus
  25. G. Tian, K. Pan, Y. Chen et al., “Vertically aligned anatase TIO2 nanowire bundle arrays: use as Pt support for counter electrodes in dye-sensitized solar cells,” Journal of Power Sources, vol. 238, pp. 350–355, 2013. View at Google Scholar
  26. F. Shahdost-fard, A. Salimi, E. Sharifi, and A. Korani, “Fabrication of a highly sensitive adenosine aptasensor based on covalent attachment of aptamer onto chitosan-carbon nanotubes-ionic liquid nanocomposite,” Biosensors and Bioelectronics, vol. 48, pp. 100–107, 2013. View at Google Scholar
  27. L. Qian, J. Mao, X. Tian, H. Yuan, and D. Xiao, “In situ synthesis of CuS nanotubes on Cu electrode for sensitive nonenzymatic glucose sensor,” Sensors and Actuators B, vol. 176, pp. 952–959, 2013. View at Google Scholar
  28. Y. Ding, Y. Liu, J. Parisi, L. Zhang, and Y. Lei, “A novel NiO-Au hybrid nanobelts based sensor for sensitive and selective glucose detection,” Biosensors and Bioelectronics, vol. 28, no. 1, pp. 393–398, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Sun, S. H. Yang, L. P. Lv et al., “A composite film of reduced graphene oxide modified vanadium oxide nanoribbons as a free standing cathode material for rechargeable lithium batteries,” Journal of Power Sources, vol. 241, pp. 168–172, 2013. View at Google Scholar
  30. H. Lee, J. Hong, S. Lee, S. D. Kim, Y. W. Kim, and T. Lee, “Selectively grown vertical silicon nanowire pn+ photodiodes via aqueous electroless etching,” Applied Surface Science, vol. 274, pp. 79–84, 2013. View at Google Scholar
  31. A. Gao, N. Lu, P. Dai et al., “Silicon-nanowire-based CMOS-compatible field-effect transistor nanosensors for ultrasensitive electrical detection of nucleic acids,” Nano Letters, vol. 11, no. 9, pp. 3974–3978, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Y. Oh, H. Y. Jang, W. J. Cho, and M. S. Islam, “Highly sensitive electrolyte-insulator semiconductor pH sensors enabled by silicon nanowires with Al2O3/SiO2 sensing membrane,” Sensors and Actuators B, vol. 171, pp. 238–243, 2012. View at Google Scholar
  33. J. Bae, H. Kim, and X. M. Zhang, “Si nanowire metal-insulator-semiconductor photodetectors as efficient light harvesters,” Nanotechnology, Article ID 095502, p. 21, 2010. View at Google Scholar
  34. P. K. Kim, S. J. Cho, J. Sung, H. S. Oh, and G. Lim, “Bio-molecules detection sensor using silicon nanowire,” in The 2nd International Conference on Smart Materials and Nanotechnology in Engineering, vol. 7493 of Proceedings of SPIE, SPIE, Weihai, China, 2009.
  35. J. H. Choi, H. Kim, H. S. Kim et al., “MMP-2 detective silicon nanowire biosensor using enzymatic cleavage reaction,” Journal of Biomedical Nanotechnology, vol. 9, pp. 732–745, 2013. View at Google Scholar
  36. A. A. Talin, L. L. Hunter, F. Ĺonard, and B. Rokad, “Large area, dense silicon nanowire array chemical sensors,” Applied Physics Letters, vol. 89, no. 15, Article ID 153102, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. K.-I. Chen, B.-R. Li, and Y.-T. Chen, “Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation,” Nano Today, vol. 6, no. 2, pp. 131–154, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. O. A. Sadik, S. K. Mwilu, and A. Aluoch, “Smart electrochemical biosensors: from advanced materials to ultrasensitive devices,” Electrochimica Acta, vol. 55, no. 14, pp. 4287–4295, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Applied Physics Letters, vol. 4, no. 5, pp. 89–90, 1964. View at Publisher · View at Google Scholar · View at Scopus
  40. H. Suzuki, H. Araki, M. Tosa, and T. Noda, “Formation of silicon nanowires by CVD using gold catalysts at low temperatures,” Materials Transactions, vol. 48, no. 8, pp. 2202–2206, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. T. W. Ho and F. C. Nan Hong, “A novel method to grow vertically aligned silicon nanowires on Si (111) and their optical absorption,” Journal of Nanomaterials, vol. 2012, Article ID 274618, 9 pages, 2012. View at Publisher · View at Google Scholar
  42. I. P. Jamal, K. C. Su, W. Kee Chan, M. Othman, S. Abdul Rahman, and Z. Aspanut, “Formation of silicon/carbon core-shell nanowires using carbon nitride nanorods template and gold catalyst,” Journal of Nanomaterials, vol. 2013, Article ID 784150, 7 pages, 2013. View at Publisher · View at Google Scholar
  43. Y. F. Zhang, Y. H. Tang, N. Wang et al., “Silicon nanowires prepared by laser ablation at high temperature,” Applied Physics Letters, vol. 72, no. 15, pp. 1835–1837, 1998. View at Publisher · View at Google Scholar · View at Scopus
  44. V. Schmidt, J. V. Wittemann, S. Senz, and U. Gósele, “Silicon nanowires: a review on aspects of their growth and their electrical properties,” Advanced Materials, vol. 21, no. 25-26, pp. 2681–2702, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. P. R. Bandaru and P. Pichanusakorn, “An outline of the synthesis and properties of silicon nanowires,” Semiconductor Science and Technology, vol. 25, no. 2, Article ID 024003, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. L. Yang, H. Lin, T. Wang, S. Ye, and M. Shao, “Tellurium-modified silicon nanowires with a large negative temperature coefficient of resistance,” Applied Physical Letters, Article ID 133111, p. 101, 2012. View at Google Scholar
  47. S. Su, Y. He, M. Zhang et al., “High-sensitivity pesticide detection via silicon nanowires-supported acetylcholinesterase-based electrochemical sensors,” Applied Physics Letters, vol. 93, no. 2, Article ID 023113, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. S. D. Hutagalung, K. A. Yaacob, and A. F. A. Aziz, “Oxide-assisted growth of silicon nanowires by carbothermal evaporation,” Applied Surface Science, vol. 254, no. 2, pp. 633–637, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, I. Bello, and S. T. Lee, “Si nanowires grown from silicon oxide,” Chemical Physics Letters, vol. 299, no. 2, pp. 237–242, 1999. View at Google Scholar · View at Scopus
  50. M.-W. Shao, M.-L. Zhang, N.-B. Wong et al., “Ag-modified silicon nanowires substrate for ultrasensitive surface-enhanced raman spectroscopy,” Applied Physics Letters, vol. 93, no. 23, Article ID 233118, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. R.-Q. Zhang, Y. Lifshitz, and S.-T. Lee, “Oxide-assisted growth of semiconducting nanowires,” Advanced Materials, vol. 15, no. 7-8, pp. 635–640, 2003. View at Google Scholar · View at Scopus
  52. W. Chen, H. Yao, C. H. Tzang, J. Zhu, M. Yang, and S.-T. Lee, “Silicon nanowires for high-sensitivity glucose detection,” Applied Physics Letters, vol. 88, no. 21, Article ID 213104, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. Z. Huang, N. Geyer, P. Werner, J. De Boor, and U. Gösele, “Metal-assisted chemical etching of silicon: a review,” Advanced Materials, vol. 23, no. 2, pp. 285–308, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. F. Bai, M. Li, D. Song, H. Yu, B. Jiang, and Y. Li, “One-step synthesis of lightly doped porous silicon nanowires in HF/AgNO3/H202 solution at room temperature,” Journal of Solid State Chemistry, vol. 196, pp. 596–600, 2012. View at Google Scholar
  55. K. Peng, Y. Wu, H. Fang, X. Zhong, Y. Xu, and J. Zhu, “Uniform, axial-orientation alignment of one-dimensional single-crystal silicon nanostructure arrays,” Angewandte Chemie, vol. 44, no. 18, pp. 2737–2742, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. K. W. Kolasinski, “Silicon nanostructures from electroless electrochemical etching,” Current Opinion in Solid State and Materials Science, vol. 9, no. 1-2, pp. 73–83, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. N. Brahiti, S.-A. Bouanik, and T. Hadjersi, “Metal-assisted electroless etching of silicon in aqueous NH4HF2 solution,” Applied Surface Science, vol. 258, no. 15, pp. 5628–5637, 2012. View at Publisher · View at Google Scholar · View at Scopus
  58. N. Megouda, R. Douani, T. Hadjersi, and R. Boukherroub, “Formation of aligned silicon nanowire on silicon by electroless etching in HF solution,” Journal of Luminescence, vol. 129, no. 12, pp. 1750–1753, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. S.-C. Shiu, S.-B. Lin, S.-C. Hung, and C.-F. Lin, “Influence of pre-surface treatment on the morphology of silicon nanowires fabricated by metal-assisted etching,” Applied Surface Science, vol. 257, no. 6, pp. 1829–1834, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. M.-L. Zhang, K.-Q. Peng, X. Fan et al., “Preparation of large-area uniform silicon nanowires arrays through metal-assisted chemical etching,” Journal of Physical Chemistry C, vol. 112, no. 12, pp. 4444–4450, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. I. Park, Z. Li, A. P. Pisano, and R. S. Williams, “Top-down fabricated silicon nanowire sensors for real-time chemical detection,” Nanotechnology, vol. 21, no. 1, Article ID 015501, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. X. T. Vu, R. GhoshMoulick, J. F. Eschermann, R. Stockmann, A. Offenhäusser, and S. Ingebrandt, “Fabrication and application of silicon nanowire transistor arrays for biomolecular detection,” Sensors and Actuators B, vol. 144, no. 2, pp. 354–360, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. V. B. Pham, X. Thanh, T. Pham et al., “Detection of DNA of genetically modified maize by a silicon nanowire field-effect transistor,” Nanoscience and Nanotechnology, vol. 2, Article ID 025010, 2011. View at Google Scholar
  64. A. Kulkarni, Y. Xu, C. Ahn et al., “The label free DNA sensor using a silicon nanowires array,” Journal of Biotechnology, vol. 160, pp. 91–96, 2012. View at Google Scholar
  65. H. D. Tong, S. Chen, W. G. Van Der Wiel, E. T. Carlen, and A. D. Van Berg, “Novel top-down wafer-scale fabrication of single crystal silicon nanowires,” Nano Letters, vol. 9, no. 3, pp. 1015–1022, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. S. Chen, J. G. Bomer, W. G. Van der Wiel, E. T. Carlen, and A. Van Den Berg, “Top-down fabrication of sub-30 nm monocrystalline silicon nanowires using conventional microfabrication,” ACS Nano, vol. 3, no. 11, pp. 3485–3492, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. L. Gangloff, E. Minoux, K. B. K. Teo et al., “Self-aligned, gated arrays of individual nanotube and nanowire emitters,” Nano Letters, vol. 4, no. 9, pp. 1575–1579, 2004. View at Publisher · View at Google Scholar · View at Scopus
  68. R. He, D. Gao, R. Fan et al., “Si nanowire bridges in microtrenches: integration of growth into device fabrication,” Advanced Materials, vol. 17, no. 17, pp. 2098–2102, 2005. View at Publisher · View at Google Scholar · View at Scopus
  69. K. Haraguchi, K. Hiruma, T. Katsuyama, K. Tominaga, M. Shirai, and T. Shimada, “Self-organized fabrication of planar GaAs nanowhisker arrays,” Applied Physics Letters, vol. 69, no. 3, pp. 386–387, 1996. View at Google Scholar · View at Scopus
  70. M. S. Islam and W. C. Ellis, “Heteroepitaxial ultrafine wire-like growth of InAs on GaAs substrates,” Applied Physics Letters, vol. 58, no. 10, pp. 1080–1082, 1991. View at Publisher · View at Google Scholar · View at Scopus
  71. B. Zhang, H. Wang, L. Lu, K. Ai, G. Zhang, and X. Cheng, “Large-area silver-coated silicon nanowire arrays for molecular sensing using surface-enhanced raman spectroscopy,” Advanced Functional Materials, vol. 18, no. 16, pp. 2348–2355, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. M.-L. Zhang, C.-Q. Yi, X. Fan et al., “A surface-enhanced Raman spectroscopy substrate for highly sensitive label-free immunoassay,” Applied Physics Letters, vol. 92, Article ID 043116, 2008. View at Google Scholar
  73. Z. Y. Jiang, X. X. Jiang, S. Su, X. P. Wei, S. T. Lee, and Y. He, “Silicon-based reproducible and active surface-enhanced Raman scattering substrate for sensitive, specific and multiplex DNA detection,” Applied Physics Letters, vol. 100, Article ID 203104, 2012. View at Google Scholar
  74. X. Han, H. Wang, X. Ou, and X. Zhang, “Highly sensitive, reproducible, and stable SERS sensors based on well controlled silver nanoparticle-decorated silicon nanowire building blocks,” Journal of Materials Chemistry, vol. 22, pp. 14127–14132, 2012. View at Google Scholar
  75. S. Su, X. Wei, Y. Zhong et al., “Silicon nanowire-based molecular beacons for high-sensitivity and sequence-specific DNA multiplexed analysis,” ACS Nano, vol. 6, no. 3, pp. 2582–2590, 2012. View at Publisher · View at Google Scholar · View at Scopus
  76. P. Serre, C. Ternon, V. Stambouli et al., “Fabrication of silicon nanowire networks for biological sensing,” Sensors and Actuators B, vol. 182, pp. 390–395, 2013. View at Google Scholar
  77. D. J. Maxwell, J. R. Taylor, and S. Nie, “Self-assembled nanoparticle probes for recognition and detection of biomolecules,” Journal of the American Chemical Society, vol. 124, no. 32, pp. 9606–9612, 2002. View at Publisher · View at Google Scholar · View at Scopus
  78. S. W. Han, S. Lee, J. Hong, E. Jang, T. Lee, and W. G. Koh, “Multiscale substrated based on hydrogel-incorporated silicon nanowires for protein patterning and microarray-based immunoassays,” Biosensors and Bioelectronics, vol. 45, pp. 129–135, 2013. View at Google Scholar
  79. L. Mu, W. Shi, J. C. Chang, and S. T. Lee, “Silicon nanowires-based florescence sensor for Cu (II),” Nanoletters, vol. 8, pp. 104–109, 2007. View at Google Scholar
  80. R. Miao, L. Mu, H. Zhang et al., “Modified silicon nanowires: a fluorescent nitric oxide biosensor with enhanced selectivity and stability,” Journal of Materials Chemistry, vol. 22, no. 8, pp. 3348–3353, 2012. View at Publisher · View at Google Scholar · View at Scopus
  81. S. Zhuo, M. Shao, H. Xu, T. Chen, D. D. D. Ma, and S. T. Lee, “Au-modified silicon nanowires for surface-enhanced fluorescence of Ln3+ (Ln 5 Pr, Nd, Ho, and Er),” Journal Material Science, vol. 24, pp. 324–330, 2013. View at Google Scholar
  82. S.-J. Zhuo, M.-W. Shao, L. Cheng, R.-H. Que, D. D. D. Ma, and S.-T. Lee, “Silver/silicon nanostructure for surface-enhanced fluorescence of Ln3+(Ln=Nd, Ho, and Er),” Journal of Applied Physics, vol. 108, no. 3, Article ID 034305, 2010. View at Publisher · View at Google Scholar · View at Scopus
  83. R. Monošík, M. Streďanský, and E. Šturdík, “Biosensors-classification, characterization and new trends,” Acta Chimica Slovaca, vol. 5, pp. 109–120, 2012. View at Google Scholar
  84. Q. Yan, Z. Wang, J. Zhang et al., “Nickel hydroxide modified silicon nanowires electrode for hydrogen peroxide sensor applications,” Electrochimica Acta, vol. 61, pp. 148–153, 2012. View at Publisher · View at Google Scholar · View at Scopus
  85. S. Su, X. Wei, Y. Guo et al., “A silicon nanowire-based electrochemical sensor with high sensitivity and electrocatalytic activity,” Material Views, vol. 30, pp. 326–331, 2013. View at Google Scholar
  86. K. Yang, H. Wang, K. Zou, and X. Zhang, “Gold nanoparticle modified silicon nanowires as biosensors,” Nanotechnology, vol. 17, no. 11, pp. S276–S279, 2006. View at Publisher · View at Google Scholar · View at Scopus
  87. M.-W. Shao, H. Yao, M.-L. Zhang, N.-B. Wong, Y.-Y. Shan, and S.-T. Lee, “Fabrication and application of long strands of silicon nanowires as sensors for bovine serum albumin detection,” Applied Physics Letters, vol. 87, no. 18, Article ID 183106, 2005. View at Publisher · View at Google Scholar · View at Scopus
  88. D. H. Kwon, H. H. An, H.-S. Kim et al., “Electrochemical albumin sensing based on silicon nanowires modified by gold nanoparticles,” Applied Surface Science, vol. 257, no. 10, pp. 4650–4654, 2011. View at Publisher · View at Google Scholar · View at Scopus
  89. S. Su, Y. He, S. Song et al., “A silicon nanowire-based electrochemical glucose biosensor with high electrocatalytic activity and sensitivity,” Nanoscale, vol. 2, no. 9, pp. 1704–1707, 2010. View at Publisher · View at Google Scholar · View at Scopus
  90. Y. Shimizu and K. Morita, “Microhole array electrode as a glucose sensor,” Analytical Chemistry, vol. 62, no. 14, pp. 1498–1501, 1990. View at Publisher · View at Google Scholar · View at Scopus
  91. S. Hui, J. Zhang, X. Chen et al., “Study of an amperometric glucose sensor based on Pd-Ni/SiNW electrode,” Sensors and Actuators B, vol. 155, no. 2, pp. 592–597, 2011. View at Publisher · View at Google Scholar · View at Scopus
  92. G. J. Zhang and Y. Ning, “Silicon nanowire biosensor and its application in disease diagnostics,” Analytica Chimica Acta, vol. 749, pp. 1–15, 2012. View at Google Scholar
  93. A. Gao, N. Lu, Y. Wang, P. Dai, X. Gao, and Y. Wang, “Enhanced sensing of nucleic acids with silicon nanowires field effect transistor biosensors,” Nano Letters, vol. 12, pp. 5262–5268, 2012. View at Google Scholar
  94. W. Y. Chen, H. C. Chen, Y. S. Yang, C. J. Huang, H. W. H. C. Chan, and W. P. Hu, “Improved DNA detection by utilizing electrically neutral DNA probe in field-effect transistor measurements as evidenced by surface plasmon resonance imaging,” Biosensors and Bioelectronics, vol. 41, pp. 795–801, 2013. View at Google Scholar
  95. G.-J. Zhang, J. H. Chua, R.-E. Chee, A. Agarwal, and S. M. Wong, “Label-free direct detection of MiRNAs with silicon nanowire biosensors,” Biosensors and Bioelectronics, vol. 24, no. 8, pp. 2504–2508, 2009. View at Publisher · View at Google Scholar · View at Scopus
  96. G.-J. Zhang, M. J. Huang, J. J. Ang, E. T. Liu, and K. V. Desai, “Self-assembled monolayer-assisted silicon nanowire biosensor for detection of protein-DNA interactions in nuclear extracts from breast cancer cell,” Biosensors and Bioelectronics, vol. 26, no. 7, pp. 3233–3239, 2011. View at Publisher · View at Google Scholar · View at Scopus
  97. H. M. Lee, K. Lee, and S. W. Jung, “Multiplexed detection of protein markers with silicon nanowire FET and sol-gel matrix,” in Proceedings of the 34th Annual International Conference of the IEEE EMBS, San Diego, Calif, USA, 2012.
  98. G. J. Zhang, M. J. Huang, J. A. Ang et al., “Label free detection of carbohydrate-protein interaction using nanoscale field-effect transistor biosensors,” Analytical Chemistry, vol. 85, pp. 4392–4397, 2013. View at Google Scholar
  99. J. Y. Wu, C. L. Tseng, Y. K. Wang, Y. Yu, K. L. Ou, and C. C. Wu, “Detecting interleukin-1b genes using a N2O plasma modified silicon nanowire biosensor,” Journal of Experimental and Clinical Medicine, vol. 5, pp. 12–16, 2013. View at Google Scholar
  100. F. Shen, J. Wang, Z. Xu et al., “Rapid flu diagnosis using silicon nanowire sensor,” Nano Letters, vol. 12, pp. 3722–3730, 2012. View at Google Scholar
  101. W. E. Svendsen, M. Jørgensen, L. Andresen et al., “Silicon nanowire as virus sensor in a total analysis system,” in Proceedings of the 25th Eurosensors Conference, pp. 288–291, Athens, Greece, September 2011. View at Publisher · View at Google Scholar · View at Scopus
  102. X. Bi, A. Agarwal, and K.-L. Yang, “Oligopeptide-modified silicon nanowire arrays as multichannel metal ion sensors,” Biosensors and Bioelectronics, vol. 24, no. 11, pp. 3248–3251, 2009. View at Publisher · View at Google Scholar · View at Scopus
  103. L. Luo, J. Jie, W. Zhang et al., “Silicon nanowire sensors for Hg2+ and Cd2+ ions,” Applied Physics Letters, vol. 94, no. 19, Article ID 193101, 2009. View at Publisher · View at Google Scholar · View at Scopus