Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2013, Article ID 480164, 9 pages
http://dx.doi.org/10.1155/2013/480164
Research Article

Optical Characterization and Growth Mechanism of Combination of Zinc Oxide Nanowires and Nanorods at Various Substrate Temperatures

Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India

Received 21 April 2013; Revised 23 July 2013; Accepted 7 August 2013

Academic Editor: Gong Ru Lin

Copyright © 2013 Poulami Ghosh and A. K. Sharma. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. P. Jayadevan and T. Y. Tseng, “One-dimensional ZnO nanostructures,” Journal of Nanoscience and Nanotechnology, vol. 12, no. 6, pp. 4409–4457, 2012. View at Publisher · View at Google Scholar
  2. C.-Y. Chen, J. R. D. Retamal, I.-W Wu et al., “Probing surface band bending of surface-engineered metal oxide nanowires,” ACS Nano, vol. 6, no. 11, pp. 9366–9372, 2012. View at Publisher · View at Google Scholar
  3. C.-Y. Chen, M.-W. Chen, J.-J. Ke, C.-A. Lin, J. R. D. Retamal, and J.-H. He, “Surface effects on optical and electrical properties of ZnO nanostructures,” Pure and Applied Chemistry, vol. 82, no. 11, pp. 2055–2073, 2010. View at Publisher · View at Google Scholar
  4. Y.-D. Chiang, W.-Y. Chang, C.-Y. Ho et al., “Single-ZnO-nanowire memory,” IEEE Transactions on Electron Devices, vol. 58, no. 6, pp. 1735–1740, 2011. View at Publisher · View at Google Scholar
  5. D. Wang, H. W. Seo, C.-C. Tin et al., “Effects of postgrowth annealing treatment on the photoluminescence of zinc oxide nanorods,” Journal of Applied Physics, vol. 99, no. 11, Article ID 113509, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. C.-Y. Chen, C.-A. Lin, M.-J. Chen, G.-R. Lin, and J.-H. He, “ZnO/Al2O3 core-shell nanorod arrays: growth, structural characterization, and luminescent properties,” Nanotechnology, vol. 20, Article ID 185605, 2009. View at Google Scholar
  7. J.-H. He, C.-H. Ho, and C.-Y. Chen, “Polymer functionalized ZnO nanobelts as oxygen sensors with a significant response enhancement,” Nanotechnology, vol. 20, Article ID 065503, 2009. View at Google Scholar
  8. D.-S. Tsai, C.-A. Lin, W.-C. Lien, H.-C. Chang, Y.-L. Wang, and J.-H. He, “Ultra-high-responsivity broadband detection of Si metal-semiconductor-metal schottky photodetectors improved by ZnO nanorod arrays,” ACS Nano, vol. 5, no. 10, pp. 7748–7753, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. M.-W. Chen, C.-Y. Chen, D.-H. Lien, Y. Ding, and J.-H. He, “Photoconductive enhancement of single ZnO nanowire through localized Schottky effects,” Optics Express, vol. 18, no. 14, pp. 14836–14841, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. C. C. Wu, D. S. Wuu, P. R. Lin, T. N. Chen, and R. H. Horng, “Effects of growth conditions on structural properties of ZnO nanostructures on sapphire substrate by metal-organic chemical vapor deposition,” Nanoscale Research Letters, vol. 4, no. 4, pp. 377–384, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. Ye. Sun, G. M. Fuge, and M. N. R. Ashfold, “Growth of aligned ZnO nanorod arrays by catalyst-free pulsed laser deposition methods,” Chemical Physics Letters, vol. 396, no. 1–3, pp. 21–26, 2004. View at Publisher · View at Google Scholar
  12. S. S. Kim and B.-T. Lee, “Effects of oxygen pressure on the growth of pulsed laser deposited ZnO films on Si(0 0 1),” Thin Solid Films, vol. 446, no. 2, pp. 307–312, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. L. Zhao, J. Lian, Y. Liu, and Q. Jiang, “Structural and optical properties of ZnO thin films deposited on quartz glass by pulsed laser deposition,” Applied Surface Science, vol. 252, no. 24, pp. 8451–8455, 2006. View at Publisher · View at Google Scholar
  14. S. Baruah and J. Dutta, “Hydrothermal growth of ZnO nanostructures,” Science and Technology of Advanced Materials, vol. 10, Article ID 013001, 2009. View at Publisher · View at Google Scholar
  15. R. Q. Guo, J. Nishimura, M. Matsumoto, D. Nakamura, and T. Okada, “Catalyst-free synthesis of vertically-aligned ZnO nanowires by nanoparticle-assisted pulsed laser deposition,” Applied Physics A, vol. 93, no. 4, pp. 843–847, 2008. View at Publisher · View at Google Scholar
  16. Z. L. Wang, “ZnO nanowire and nanobelt platform for nanotechnology,” Materials Science and Engineering R, vol. 64, no. 3-4, pp. 33–71, 2009. View at Publisher · View at Google Scholar
  17. R. Zhang, P. G. Yin, N. Wang, and L. Gou, “Photoluminescence and Raman scattering of ZnO nanorods,” Solid State Sciences, vol. 11, no. 4, pp. 865–869, 2009. View at Publisher · View at Google Scholar
  18. P. S. Kumar, A. D. Raj, D. Mangalaraj, and D. Nataraj, “Growth and characterization of ZnO nanostructured thin films by a two step chemical method,” Applied Surface Science, vol. 255, no. 5, pp. 2382–2387, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. X. M. Teng, H. T. Fan, S. S. Pan, C. Ye, and G. H. Li, “Photoluminescence of ZnO thin films on Si substrate with and without ITO buffer layer,” Journal of Physics D, vol. 39, p. 471, 2006. View at Publisher · View at Google Scholar
  20. B. D. Cullity, Elements of X-Ray Diffraction, Addison-Wesley, Reading, Mass, USA, 1978.
  21. J. Zhao, L. Hu, Z. Wang, J. Sun, and Z. Wang, “ZnO thin films on Si(1 1 1) grown by pulsed laser deposition from metallic Zn target,” Applied Surface Science, vol. 253, no. 2, pp. 841–845, 2006. View at Publisher · View at Google Scholar
  22. S. Cho, J. Ma, Y. Kim, Yi. Sun, G. K. L. Wong, and J. B. Ketterson, “Photoluminescence and ultraviolet lasing of polycrystalline ZnO thin films prepared by the oxidation of the metallic Zn,” Applied Physics Letters, vol. 75, p. 2761, 1999. View at Publisher · View at Google Scholar
  23. A. Mohanto and R. K. Thereja, “Photoluminescence study of ZnO nanowires grown by thermal evaporation on pulsed laser deposited ZnO buffer layer,” Journal of Applied Physics, vol. 104, Article ID 044906, 2008. View at Publisher · View at Google Scholar
  24. X. Mu, I. B. Zotova, Y. J. Ding, H. Yang, and G. J. Salamo, “Observation of an anomalously large blueshift of the photoluminescence peak and evidence of band-gap renormalization in InP/InAs/InP quantum wires,” Applied Physics Letters, vol. 79, p. 1091, 2001. View at Publisher · View at Google Scholar
  25. C.-W. Chen, K.-H. Chen, C.-H. Shen, J.-J. Wu, H.-I. Wen, and W.-F. Pong, “Anomalous blueshift in emission spectra of ZnO nanorods with sizes beyond quantum confinement regime,” Applied Physics Letters, vol. 88, Article ID 241905, 2006. View at Publisher · View at Google Scholar
  26. Y. Yan, Z.-M. Liao, Y.-Q. Bie et al., “Luminescence blue-shift of CdSe nanowires beyond the quantum confinement regime,” Applied Physics Letters, vol. 99, Article ID 103103, 2011. View at Publisher · View at Google Scholar
  27. S. Chakraborty and P. Kumbhakar, “Observation of exciton-phonon coupling and enhanced photoluminescence emission in ZnO nanotwins synthesized by a simple wet chemical approach,” Materials Letters, vol. 100, pp. 40–43, 2013. View at Publisher · View at Google Scholar
  28. Y. H. Yang, Y. Feng, and G. W. Yang, “Experimental evidence and physical understanding of ZnO vapor-liquid-solid nanowire growth,” Applied Physics A, vol. 102, no. 2, pp. 319–323, 2011. View at Publisher · View at Google Scholar
  29. J. Dai, C. X. Xu, Z. L. Shi et al., “Three-photon absorption induced whispering gallery mode lasing in ZnO twin-rods microstructure,” Optical Materials, vol. 33, no. 3, pp. 288–291, 2011. View at Publisher · View at Google Scholar
  30. S. Y. Hu, Y. C. Lee, J. W. Lee, J. C. Haung, J. L. Shen, and W. Water, “The structural and optical properties of ZnO/Si thin films by RTA treatments,” Applied Surface Science, vol. 254, no. 6, pp. 1578–1582, 2008. View at Publisher · View at Google Scholar
  31. R. S. Ajimsha, R. Manoj, P. M. Aneesh, and M. K. Jayaraj, “Violet luminescence from ZnO nanorods grown by room temperature pulsed laser deposition,” Current Applied Physics, vol. 10, no. 2, pp. 693–697, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. S. K. Panda and C. Jacob, “Surface enhanced Raman scattering and photoluminescence properties of catalytic grown ZnO nanostructures,” Applied Physics A, vol. 96, no. 4, pp. 805–811, 2009. View at Publisher · View at Google Scholar
  33. S. Chen, Y. Liu, C. Shao et al., “Structural and optical properties of uniform ZnO nanosheets,” Advanced Materials, vol. 17, no. 5, pp. 586–590, 2005. View at Publisher · View at Google Scholar
  34. S.-S. Wu, Q.-M. Jia, Y.-L. Sun, S.-Y. Shan, L.-H. Jiang, and Y.-M. Wang, “Microwave-hydrothermal preparation of flower-like ZnO microstructure and its photocatalytic activity,” Transactions of Nonferrous Metals Society of China, vol. 22, no. 10, pp. 2465–2470, 2012. View at Publisher · View at Google Scholar
  35. T. C. Damen, S. P. S. Porto, and B. Tell, “Raman effect in zinc oxide,” Physical Review, vol. 142, no. 2, pp. 570–574, 1966. View at Publisher · View at Google Scholar · View at Scopus
  36. S. B. Yahia, L. Znaidi, A. Kanaev, and J. P. Petitet, “Raman study of oriented ZnO thin films deposited by sol-gel method,” Spectrochimica Acta A, vol. 71, no. 4, pp. 1234–1238, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Youssef, P. Combette, J. Podlecki, R. Al Asmar, and A. Foucaran, “Structural and optical characterization of ZnO thin films deposited by reactive RF magnetron sputtering,” Crystal Growth and Design, vol. 9, no. 2, pp. 1088–1094, 2009. View at Google Scholar · View at Scopus
  38. K. Wu, Q. Fang, W. Wang, M. A. Thomas, and J. Cui, “On the origin of an additional Raman mode at 275 cm−1 in N-doped ZnO thin films,” Journal of Applied Physics, vol. 111, Article ID 063530, 2012. View at Google Scholar