Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2013 (2013), Article ID 498292, 5 pages
http://dx.doi.org/10.1155/2013/498292
Research Article

Investigation of Self-Assembly of Two-Component Organogel System Based on Trigonal Acids and Aminobenzothiazole Derivatives

College of Textile Engineering and Art, Taiyuan University of Technology, Taiyuan 030024, China

Received 30 April 2013; Accepted 31 May 2013

Academic Editor: Tifeng Jiao

Copyright © 2013 Youbo Di et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Deindörfer, T. Geiger, D. Schollmeyer, J. H. Ye, and R. Zentel, “Semicarbazides as gel forming agents for common solvents and liquid crystals,” Journal of Materials Chemistry, vol. 16, no. 4, pp. 351–358, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Terech and R. G. Weiss, “Low molecular mass gelators of organic liquids and the properties of their gels,” Chemical Reviews, vol. 97, no. 8, pp. 3133–3160, 1997. View at Google Scholar · View at Scopus
  3. S. van der Laan, B. L. Feringa, R. M. Kellogg, and J. Van Esch, “Remarkable polymorphism in gels of new azobenzene bis-urea gelators,” Langmuir, vol. 18, no. 19, pp. 7136–7140, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. L. A. Estroff and A. D. Hamilton, “Water gelation by small organic molecules,” Chemical Reviews, vol. 104, no. 3, pp. 1201–1218, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. A. R. Hirst and D. K. Smith, “Two-component gel-phase materials—highly tunable self-assembling systems,” Chemistry, vol. 11, no. 19, pp. 5496–5508, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. A. R. Hirst, D. K. Smith, and J. P. Harrington, “Unique nanoscale morphologies underpinning organic gel-phase materials,” Chemistry, vol. 11, no. 22, pp. 6552–6559, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. F. Xin, H. Zhang, B. Hao et al., “Controllable transformation from sensitive and reversible heat-set organogel to stable gel induced by sodium acetate,” Colloids and Surfaces A, vol. 410, pp. 18–22, 2012. View at Google Scholar
  8. F. S. Schoonbeek, J. H. van Esch, R. Hulst, R. M. Kellogg, and B. L. Feringa, “Geminal Bis-ureas as gelators for organic solvents: gelation properties and structural studies in solution and in the gel state,” Chemistry, vol. 6, no. 14, pp. 2633–2643, 2000. View at Google Scholar · View at Scopus
  9. M. Moniruzzaman and P. R. Sundararajan, “Low molecular weight organogels based on long-chain carbamates,” Langmuir, vol. 21, no. 9, pp. 3802–3807, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. B. Escuder, S. Martí, and J. F. Miravet, “Organogel formation by coaggregation of adaptable amidocarbamates and their tetraamide analogues,” Langmuir, vol. 21, no. 15, pp. 6776–6787, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. N. M. Sangeetha and U. Maitra, “Supramolecular gels: functions and uses,” Chemical Society Reviews, vol. 34, no. 10, pp. 821–836, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. M. de Loos, B. L. Feringa, and J. H. van Esch, “Design and application of self-assembled low molecular weight hydrogels,” European Journal of Organic Chemistry, vol. 2005, no. 17, pp. 3615–3631, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. M. George and R. G. Weiss, “Molecular organogels. Soft matter comprised of low-molecular-mass organic gelators and organic liquids,” Accounts of Chemical Research, vol. 39, no. 8, pp. 489–497, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. M. de Loos, J. H. van Esch, R. M. Kellogg, and B. L. Feringa, “C3-symmetric, amino acid based organogelators and thickeners: a systematic study of structure-property relations,” Tetrahedron, vol. 63, no. 31, pp. 7285–7301, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. P. Dastidar, “Supramolecular gelling agents: can they be designed?” Chemical Society Reviews, vol. 37, no. 12, pp. 2699–2715, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Suzuki and K. Hanabusa, “L-lysine-based low-molecular-weight gelators,” Chemical Society Reviews, vol. 38, no. 4, pp. 967–975, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Mukhopadhyay, Y. Iwashita, M. Shirakawa, S. Kawano, N. Fujita, and S. Shinkai, “Spontaneous colorimetric sensing of the positional isomers of dihydroxynaphthalene in a 1D organogel matrix,” Angewandte Chemie, vol. 45, no. 10, pp. 1592–1595, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Wang, L. Tang, and Y. Wang, “New hydrogen-bonded supramolecular hydrogels and fibers derived from 1,2,4,5-benzenetetracarboxylic acid and 4-hydroxypyridine,” Chemistry Letters, vol. 35, no. 5, pp. 548–549, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Wu, L. Tang, K. Chen, L. Yan, F. Li, and Y. Wang, “Formation of supramolecular hydrogels with controlled microstructures and stability via molecular assembling in a two-component system,” Journal of Colloid and Interface Science, vol. 307, no. 1, pp. 280–287, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Jiao, F. Gao, Y. Wang, J. Zhou, F. Gao, and X. Luo, “Supramolecular gel and nanostructures of bolaform and trigonal cholesteryl derivatives with different aromatic spacers,” Current Nanoscience, vol. 8, no. 1, pp. 111–116, 2012. View at Google Scholar · View at Scopus
  21. J. J. van Gorp, J. A. J. M. Vekemans, and E. W. Meijer, “C3-symmetrical supramolecular architectures: fibers and organic gels from discotic trisamides and trisureas,” Journal of the American Chemical Society, vol. 124, no. 49, pp. 14759–14769, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. V. Percec, M. Glodde, G. Johansson, V. S. K. Balagurusamy, and P. A. Heinev, “Transformation of a spherical supramolecular dendrimer into a pyramidal columnar supramolecular dendrimer mediated by the fluorophobic effect,” Angewandte Chemie, vol. 42, no. 36, pp. 4338–4342, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Wang, L. Tang, and J. Yu, “Investigation on the assembled structure-property correlation of supramolecular hydrogel formed from low-molecular-weight gelator,” Journal of Colloid and Interface Science, vol. 319, no. 1, pp. 357–364, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Zinic, F. Vögtle, and F. Fages, “Cholesterol-based gelators,” Topics in Current Chemistry, vol. 256, pp. 39–76, 2005. View at Google Scholar
  25. G. Zhu and J. S. Dordick, “Solvent effect on organogel formation by low molecular weight molecules,” Chemistry of Materials, vol. 18, no. 25, pp. 5988–5995, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. T. F. Jiao, Y. J. Wang, Q. R. Zhang, J. X. Zhou, and F. M. Gao, “Regulation of substituent groups on morphologies and self-assembly of organogels based on some azobenzene imide derivatives,” Nanoscale Research Letters, vol. 8, no. 160, pp. 1–8, 2013. View at Google Scholar
  27. M. Kogiso, S. Ohnishi, K. Yase, M. Masuda, and T. Shimizu, “Dicarboxylic oligopeptide bolaamphiphiles: proton-triggered self-assembly of microtubes with loose solid surfaces,” Langmuir, vol. 14, no. 18, pp. 4978–4986, 1998. View at Google Scholar · View at Scopus