Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2013, Article ID 506593, 8 pages
http://dx.doi.org/10.1155/2013/506593
Research Article

The Use of Injectable Chitosan/Nanohydroxyapatite/Collagen Composites with Bone Marrow Mesenchymal Stem Cells to Promote Ectopic Bone Formation In Vivo

1Department of Orthopedics, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, China
2The Second Clinical Medical College of Southern Medical University, Guangzhou 510282, China
3Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
4Department of Radiology, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, China
5Department of Ultrasonic Diagnosis, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, China

Received 13 June 2013; Accepted 14 August 2013

Academic Editor: Shuming Zhang

Copyright © 2013 Bo Yu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. X. Li, Q. Feng, X. Liu, W. Dong, and F. Cui, “Collagen-based implants reinforced by chitin fibres in a goat shank bone defect model,” Biomaterials, vol. 27, no. 9, pp. 1917–1923, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Cancedda, P. Giannoni, and M. Mastrogiacomo, “A tissue engineering approach to bone repair in large animal models and in clinical practice,” Biomaterials, vol. 28, no. 29, pp. 4240–4250, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Venkatesan and S.-K. Kim, “Chitosan composites for bone tissue engineering—an overview,” Marine Drugs, vol. 8, no. 8, pp. 2252–2266, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. M. B. Dreifke, N. A. Ebraheim, and A. C. Jayasuriya, “Investigation of potential injectable polymeric biomaterials for bone regeneration,” Journal of Biomedical Materials Research A, vol. 101, no. 8, pp. 2436–2447, 2013. View at Publisher · View at Google Scholar
  5. A. Gutowska, B. Jeong, and M. Jasionowski, “Injectable gels for tissue engineering,” Anatomical Record, vol. 263, no. 4, pp. 342–349, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. L. M. Boyd and A. J. Carter, “Injectable biomaterials and vertebral endplate treatment for repair and regeneration of the intervertebral disc,” European Spine Journal, vol. 15, supplement 3, pp. S414–S421, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. F. M. Tonelli, A. K. Santos, K. N. Gomes et al., “Carbon nanotube interaction with extracellular matrix proteins producing scaffolds for tissue engineering,” International Journal of Nanomedicine, vol. 7, pp. 4511–4529, 2012. View at Google Scholar
  8. X. Li, L. Wang, Y. Fan, Q. Feng, F. Z. Cui, and F. Watari, “Nanostructured scaffolds for bone tissue engineering,” Journal of Biomedical Materials Research A, vol. 101, no. 8, pp. 2424–2435, 2013. View at Publisher · View at Google Scholar
  9. X. Li, Q. Feng, W. Wang, and F. Cui, “Chemical characteristics and cytocompatibility of collagen-based scaffold reinforced by chitin fibers for bone tissue engineering,” Journal of Biomedical Materials Research B, vol. 77, no. 2, pp. 219–226, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Wang, “Developing bioactive composite materials for tissue replacement,” Biomaterials, vol. 24, no. 13, pp. 2133–2151, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. Z. Li, L. Yubao, Y. Aiping, P. Xuelin, W. Xuejiang, and Z. Xiang, “Preparation and in vitro investigation of chitosan/nano-hydroxyapatite composite used as bone substitute materials,” Journal of Materials Science, vol. 16, no. 3, pp. 213–219, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. B. M. Chesnutt, Y. Yuan, K. Buddington, W. O. Haggard, and J. D. Bumgardner, “Composite chitosan/nano-hydroxyapatite scaffolds induce osteocalcin production by osteoblasts in vitro and support bone formation in vivo,” Tissue engineering A, vol. 15, no. 9, pp. 2571–2579, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. Z. Huang, Q. Feng, B. Yu, and S. Li, “Biomimetic properties of an injectable chitosan/nano-hydroxyapatite/collagen composite,” Materials Science and Engineering C, vol. 31, no. 3, pp. 683–687, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. X. Li, H. Liu, X. Niu et al., “The use of carbon nanotubes to induce osteogenic differentiation of human adipose-derived MSCs in vitro and ectopic bone formation in vivo,” Biomaterials, vol. 33, no. 19, pp. 4818–4827, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. Z. Huang, J. Tian, B. Yu, Y. Xu, and Q. Feng, “A bone-like nano-hydroxyapatite/collagen loaded injectable scaffold,” Biomedical Materials, vol. 4, no. 5, Article ID 055005, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Xiao, S. Mareddy, and R. Crawford, “Clonal characterization of bone marrow derived stem cells and their application for bone regeneration,” International Journal of Oral Science, vol. 2, no. 3, pp. 127–135, 2010. View at Google Scholar · View at Scopus
  17. Z. Huang, Y. Chen, Q.-L. Feng et al., “In vivo bone regeneration with injectable chitosan/hydroxyapatite/collagen composites and mesenchymal stem cells,” Frontiers of Materials Science, vol. 5, no. 3, pp. 301–310, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Y. Sun, S. P. Ki, S. K. Moon, J. M. Rhee, G. Khang, and B. L. Hai, “Repair of diaphyseal bone defects with calcitriol-loaded PLGA scaffolds and marrow stromal cells,” Tissue Engineering, vol. 13, no. 5, pp. 1125–1133, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. P. Kasten, J. Vogel, F. Geiger, P. Niemeyer, R. Luginbühl, and K. Szalay, “The effect of platelet-rich plasma on healing in critical-size long-bone defects,” Biomaterials, vol. 29, no. 29, pp. 3983–3992, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. Z. Huang, B. Yu, Q. Feng, S. Li, Y. Chen, and L. Luo, “In situ-forming chitosan/nano-hydroxyapatite/collagen gel for the delivery of bone marrow mesenchymal stem cells,” Carbohydrate Polymers, vol. 85, no. 1, pp. 261–267, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. M. A. Scott, B. Levi, A. Askarinam et al., “Brief review of models of ectopic bone formation,” Stem Cells and Development, vol. 21, no. 5, pp. 655–667, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Muraglia, I. Martin, R. Cancedda, and R. Quarto, “A nude mouse model for human bone formation in unloaded conditions,” Bone, vol. 22, supplement 5, pp. 131S–134S, 1998. View at Publisher · View at Google Scholar · View at Scopus
  23. P. H. Krebsbach, S. A. Kuznetsov, K. Satomura, R. V. B. Emmons, D. W. Rowe, and P. G. Robey, “Bone formation in vivo: comparison of osteogenesis by transplanted mouse and human marrow stromal fibroblasts,” Transplantation, vol. 63, no. 8, pp. 1059–1069, 1997. View at Google Scholar · View at Scopus
  24. R. Langer and J. P. Vacanti, “Tissue engineering,” Science, vol. 260, no. 5110, pp. 920–926, 1993. View at Google Scholar · View at Scopus
  25. M. R. Norton and C. Gamble, “Bone classification: an objective scale of bone density using the computerized tomography scan,” Clinical Oral Implants Research, vol. 12, no. 1, pp. 79–84, 2001. View at Google Scholar · View at Scopus
  26. R. C. G. de Oliveira, C. R. Leles, L. M. Normanha, C. Lindh, and R. F. Ribeiro-Rotta, “Assessments of trabecular bone density at implant sites on CT images,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontology, vol. 105, no. 2, pp. 231–238, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. J. M. Anderson, A. Rodriguez, and D. T. Chang, “Foreign body reaction to biomaterials,” Seminars in Immunology, vol. 20, no. 2, pp. 86–100, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. J. M. Anderson and A. K. McNally, “Biocompatibility of implants: lymphocyte/macrophage interactions,” Seminars in Immunopathology, vol. 33, no. 3, pp. 221–233, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. E. Alsberg, H. J. Kong, Y. Hirano, M. K. Smith, A. Albeiruti, and D. J. Mooney, “Regulating bone formation via controlled scaffold degradation,” Journal of Dental Research, vol. 82, no. 11, pp. 903–908, 2003. View at Google Scholar · View at Scopus
  30. P. M. Henson, “The immunologic release of constituents from neutrophil leukocytes. I. The role of antibody and complement on nonphagocytosable surfaces or phagocytosable particles,” Journal of Immunology, vol. 107, no. 6, pp. 1535–1546, 1971. View at Google Scholar · View at Scopus
  31. P. M. Henson, “The immunologic release of constituents from neutrophil leukocytes. II. Mechanisms of release during phagocytosis, and adherence to nonphagocytosable surfaces,” Journal of Immunology, vol. 107, no. 6, pp. 1547–1557, 1971. View at Google Scholar · View at Scopus