Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2013, Article ID 506815, 15 pages
http://dx.doi.org/10.1155/2013/506815
Research Article

The Analytical Transmission Electron Microscopy: A Powerful Tool for the Investigation of Low-Dimensional Carbon Nanomaterials

1Department of Occupational Hygiene, National Institution for Insurance against Accidents at Work (INAIL Research), Monte Porzio Catone, Rome, Italy
2Department of Technologies and Health, Italian National Institute of Health (ISS), Rome, Italy

Received 15 April 2013; Accepted 14 October 2013

Academic Editor: Nadya Mason

Copyright © 2013 Stefano Casciardi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, no. 6348, pp. 56–58, 1991. View at Google Scholar · View at Scopus
  2. A. Oberlin, M. Endo, and T. Koyama, “High resolution electron microscope observations of graphitized carbon fibers,” Carbon, vol. 14, no. 2, pp. 133–135, 1976. View at Google Scholar · View at Scopus
  3. A. Oberlin, M. Endo, and T. Koyama, “Filamentous growth of carbon through benzene decomposition,” Journal of Crystal Growth, vol. 32, no. 3, pp. 335–349, 1976. View at Google Scholar · View at Scopus
  4. P. Avouris, T. Hertel, R. Martel, T. Schmidt, H. R. Shea, and R. E. Walkup, “Carbon nanotubes: nanomechanics, manipulation, and electronic devices,” Applied Surface Science, vol. 141, no. 3-4, pp. 201–209, 1999. View at Google Scholar · View at Scopus
  5. C. Dekker, “Carbon nanotubes as molecular quantum wires,” Physics Today, vol. 52, no. 5, pp. 22–28, 1999. View at Google Scholar · View at Scopus
  6. A. D. Maynard, P. A. Baron, M. Foley, A. A. Shvedova, E. R. Kisin, and V. Castranova, “Exposure to carbon nanotube material: aerosol release during the handling of unrefined single-walled carbon nanotube material,” Journal of Toxicology and Environmental Health A, vol. 67, no. 1, pp. 87–107, 2004. View at Google Scholar · View at Scopus
  7. O. V. Salata, “Applications of nanoparticles in biology and medicine,” Journal of Nanobiotechnology, vol. 2, article 3, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Beckman, E. Johnston-Halperin, Y. Luo, J. E. Green, and J. R. Heath, “Bridging dimensions: demultiplexing ultrahigh-density nanowire circuits,” Science, vol. 310, no. 5747, pp. 465–468, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Y. Chen, A. Kutana, C. P. Collier, and K. P. Giapis, “Materials science: electrowetting in carbon nanotubes,” Science, vol. 310, no. 5753, pp. 1480–1483, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Chen, V. Perebeinos, M. Freitag et al., “Applied physics: bright infrared emission from electrically induced excitons in carbon nanotubes,” Science, vol. 310, no. 5751, pp. 1171–1174, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. J.-P. Salvetat, J.-M. Bonard, N. B. Thomson et al., “Mechanical properties of carbon nanotubes,” Applied Physics A, vol. 69, no. 3, pp. 255–260, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing,” Chemical Society Reviews, vol. 42, no. 7, pp. 2824–2860, 2013. View at Publisher · View at Google Scholar
  13. V. Shanov, W. Cho, R. Malik et al., “CVD growth, characterization and applications of carbon nanostructured materials,” Surface and Coatings Technology, vol. 230, pp. 77–86, 2013. View at Publisher · View at Google Scholar
  14. M. S. Arnold, J. L. Blackburn, J. J. Crochet et al., “Recent developments in the photophysics of single-walled carbon nanotubes for their use as active and passive material elements in thin film photovoltaics,” Physical Chemistry Chemical Physics, vol. 15, no. 36, pp. 14896–14918, 2013. View at Publisher · View at Google Scholar
  15. S. Parveen, S. Rana, and R. Fangueiro, “A review on nanomaterial dispersion, microstructure, and mechanical properties of carbon nanotube and nanofiber reinforced cementitious composites,” Journal of Nanomaterials, vol. 2013, Article ID 710175, 19 pages, 2013. View at Publisher · View at Google Scholar
  16. J. Zhao and J. Zhu, “Electron microscopy and in situ testing of mechanical deformation of carbon nanotubes,” Micron, vol. 42, no. 7, pp. 663–679, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Wang, K. Takei, T. Takahashi, and A. Javey, “Carbon nanotube electronics-moving forward,” Chemical Society Reviews, vol. 42, no. 7, pp. 2592–2609, 2013. View at Publisher · View at Google Scholar
  18. Y. Wu, X. Lin, and M. Zhang, “Carbon nanotubes for thin film transistor: fabrication, properties, and applications,” Journal of Nanomaterials, vol. 2013, Article ID 627215, 16 pages, 2013. View at Publisher · View at Google Scholar
  19. M. Terrones, “Sharpening the chemical scissors to unzip carbon nanotubes: crystalline graphene nanoribbons,” ACS Nano, vol. 4, no. 4, pp. 1775–1781, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Terrones, A. R. Botello-Méndez, J. Campos-Delgado et al., “Graphene and graphite nanoribbons: morphology, properties, synthesis, defects and applications,” Nano Today, vol. 5, no. 4, pp. 351–372, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Dutta and S. K. Pati, “Novel properties of graphene nanoribbons: a review,” Journal of Materials Chemistry, vol. 20, no. 38, pp. 8207–8223, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Zhu, S. Murali, W. Cai et al., “Graphene and graphene oxide: synthesis, properties, and applications,” Advanced Materials, vol. 22, no. 35, pp. 3906–3924, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. H. Wu, T. Yu, and Z. X. Shen, “Two-dimensional carbon nanostructures: fundamental properties, synthesis, characterization, and potential applications,” Journal of Applied Physics, vol. 108, no. 7, Article ID 071301, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth, “The structure of suspended graphene sheets,” Nature, vol. 446, no. 7131, pp. 60–63, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. U. Bangert, M. H. Gass, A. L. Bleloch, R. R. Nair, and A. K. Geim, “Manifestation of ripples in free-standing graphene in lattice images obtained in an aberration-corrected scanning transmission electron microscope,” Physica Status Solidi A, vol. 206, no. 6, pp. 1117–1122, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Fasolino, J. H. Los, and M. I. Katsnelson, “Intrinsic ripples in graphene,” Nature Materials, vol. 6, no. 11, pp. 858–861, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Grill, “Diamond-like carbon: state of the art,” Diamond and Related Materials, vol. 8, no. 2-5, pp. 428–434, 1999. View at Google Scholar · View at Scopus
  28. A. K. Bhaskar, V. N. Deshmukh, and L. Prajapati, “Carbon nanotube as a drug delivery system: a review,” International Journal of Pharmacy and Technology, vol. 5, no. 2, pp. 2695–2711, 2013. View at Google Scholar
  29. M. Roldo and D. G. Fatouros, “Biomedical applications of carbon nanotubes,” Annual Reports on the Progress of Chemistry C, vol. 109, pp. 10–35, 2013. View at Google Scholar
  30. World Health Organization, Health Aspects of Air Pollution Results From the WHO Project “Systematic Review of Health Aspects of Air Pollution in Europe”, WHO Regional Office for Europe, Copenhagen, Denmark, 2004.
  31. G. Oberdörster, E. Oberdörster, and J. Oberdörster, “Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles,” Environmental Health Perspectives, vol. 113, no. 7, pp. 823–839, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. C.-W. Lam, J. T. James, R. McCluskey, S. Arepalli, and R. L. Hunter, “A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks,” Critical Reviews in Toxicology, vol. 36, no. 3, pp. 189–217, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. Department of Employment and Workplace Relations, Australian Safety and Compensation Council, “A review of the potential occupational health and safety implication of nanotechnology,” Final Report, 2006. View at Google Scholar
  34. National Institute for Occupational Safety and Health, Approaches to Safe Nanotechnology: An Information exchange with NIOSH, Department of Health and Human Services, Centers for Disease Control and Prevention, 2007.
  35. C. L. Ursini, D. Cavallo, A. M. Fresegna et al., “Study of cytotoxic and genotoxic effects of hydroxyl-functionalized multiwalled carbon nanotubes on human pulmonary cells,” Journal of Nanomaterials, vol. 2012, Article ID 815979, 9 pages, 2012. View at Publisher · View at Google Scholar
  36. Y.-Y. Guo, J. Zhang, Y.-F. Zheng, J. Yang, and X.-Q. Zhu, “Cytotoxic and genotoxic effects of multi-wall carbon nanotubes on human umbilical vein endothelial cells in vitro,” Mutation Research, vol. 721, no. 2, pp. 184–191, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. K. Yang and Z. Liu, “In vivo biodistribution, pharmacokinetics, and toxicology of carbon nanotubes,” Current Drug Metabolism, vol. 13, no. 8, pp. 1057–1067, 2012. View at Publisher · View at Google Scholar
  38. S. Sharifi, S. Behzadi, S. Laurent, M. Laird Forrest, P. Stroeve, and M. Mahmoudi, “Toxicity of nanomaterials,” Chemical Society Reviews, vol. 41, no. 6, pp. 2323–2343, 2012. View at Publisher · View at Google Scholar · View at Scopus
  39. C. J. Humphreys, “Radiation effects,” Ultramicroscopy, vol. 28, no. 1–4, pp. 357–358, 1989. View at Google Scholar · View at Scopus
  40. R. F. Egerton, P. Li, and M. Malac, “Radiation damage in the TEM and SEM,” Micron, vol. 35, no. 6, pp. 399–409, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. Z. Liu, Q. Zhang, and L.-C. Qin, “Accurate determination of atomic structure of multiwalled carbon nanotubes by nondestructive nanobeam electron diffraction,” Applied Physics Letters, vol. 86, no. 19, Article ID 191903, pp. 1–3, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Béché, J. L. Rouvière, J. P. Barnes, and D. Cooper, “Strain measurement at the nanoscale: comparison between convergent beam electron diffraction, nanobeam electron diffraction, high resolution imaging and dark field electron holography,” Ultramicroscopy, vol. 131, pp. 10–23, 2013. View at Publisher · View at Google Scholar
  43. J. M. Zuo, M. Gao, J. Tao, B. Q. Li, R. Twesten, and I. Petrov, “Coherent nano-area electron diffraction,” Microscopy Research and Technique, vol. 64, no. 5-6, pp. 347–355, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. W. Robards and A. J. Wilson, Procedures in Electron Microscopy, John Wiley & Sons, New York, NY, USA, 1998.
  45. D. B. Williams and C. B. Carter, Transmission Electron Microscopy: A Textbook For Materials Science, Springer, New York, NY, USA, 1996. View at Publisher · View at Google Scholar
  46. R. F. Egerton, “Electron energy-loss spectroscopy in the TEM,” Reports on Progress in Physics, vol. 72, no. 1, Article ID 016502, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. R. F. Egerton, Electron Energy Loss Spectroscopy in the Electron Microscope, Plenum Press, New York, NY, USA, 1996.
  48. R. F. Egerton, “Formulae for light-element microanalysis by electron energy-loss spectrometry,” Ultramicroscopy, vol. 3, no. 2, pp. 243–251, 1978. View at Google Scholar · View at Scopus
  49. R. F. Egerton, “K-shell ionization cross-sections for use in microanalysis,” Ultramicroscopy, vol. 4, no. 2, pp. 169–179, 1979. View at Google Scholar · View at Scopus
  50. R. D. Leapman, P. Rez, and D. F. Mayers, “K, L, and M shell generalized oscillator strengths and ionization cross sections for fast electron collisions,” The Journal of Chemical Physics, vol. 72, no. 2, pp. 1232–1243, 1980. View at Google Scholar · View at Scopus
  51. D. R. Liu and L. M. Brown, “Influence of some practical factors on background extrapolation in EELS quantification,” Journal of Microscopy, vol. 147, no. 1, pp. 37–49, 1987. View at Publisher · View at Google Scholar
  52. C. Colliex, “Electron energy loss in the electron microscope,” in Advances in Optical and Electron Microscopy, R. Barer and V. E. Cosslet, Eds., vol. 9, Academic Press, New York, NY, USA, 1984. View at Google Scholar
  53. P. Castrucci, F. Tombolini, M. Scarselli et al., “Anharmonicity in single-wall carbon nanotubes as evidenced by means of extended energy loss fine structure spectroscopy analysis,” Physical Review B, vol. 75, no. 3, Article ID 035420, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. J. J. Ritsko, N. O. Lipari, P. C. Gibbons, and S. E. Schnatterly, “Core excitons in tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ),” Physical Review Letters, vol. 37, no. 16, pp. 1068–1071, 1976. View at Publisher · View at Google Scholar · View at Scopus
  55. M. de Crescenzi, F. Tombolini, M. Scarselli et al., “Visible and near ultraviolet photocurrent generation in carbon nanotubes,” Surface Science, vol. 601, no. 13, pp. 2810–2813, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Scarselli, C. Scilletta, F. Tombolini et al., “Photon harvesting with multi wall carbon nanotubes,” Superlattices and Microstructures, vol. 46, no. 1-2, pp. 340–346, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. M. Scarselli, C. Scilletta, F. Tombolini et al., “Multiwall carbon nanotubes decorated with copper nanoparticles: effect on the photocurrent response,” Journal of Physical Chemistry C, vol. 113, no. 14, pp. 5860–5864, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. B. K. Teo and D. C. Joy, EXAFS Spectroscopy, Techniques, and Applications, Plenum Press, New York, NY, USA, 1981.
  59. B. K. Teo, EXAFS: Basic Principles and Data Analysis, vol. 9 of Inorganic Chemistry Concepts, Springer, Heidelberg, Germany, 1986.
  60. M. Diociaiuti, L. Lozzi, M. Passacantando, S. Santucci, P. Picozzi, and M. de Crescenzi, “Influence of non-dipolar terms on the Cu L2,3 and M2,3 electron energy loss fine structure (EELFS) spectra in transmission and reflection mode,” Journal of Electron Spectroscopy and Related Phenomena, vol. 82, no. 1-2, pp. 1–12, 1996. View at Google Scholar · View at Scopus
  61. P. Castrucci, F. Tombolini, M. Scarselli et al., “Comparison of the local order in highly oriented pyrolitic graphite and bundles of single-wall carbon nanotubes by nanoscale extended energy loss spectra,” Journal of Physical Chemistry C, vol. 113, no. 12, pp. 4848–4855, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. P. Castrucci, M. Scarselli, M. de Crescenzi et al., “Packing-induced electronic structure changes in bundled single-wall carbon nanotubes,” Applied Physics Letters, vol. 87, no. 10, Article ID 103106, 2005. View at Publisher · View at Google Scholar · View at Scopus
  63. J. M. Zuo, I. Vartanyants, M. Gao, R. Zhang, and L. A. Nagahara, “Atomic resolution imaging of a carbon nanotube from diffraction intensities,” Science, vol. 300, no. 5624, pp. 1419–1421, 2003. View at Publisher · View at Google Scholar · View at Scopus
  64. L. Persichetti, F. Tombolini, S. Casciardi et al., “Folding and stacking defects of graphene flakes probed by electron nanobeam,” Applied Physics Letters, vol. 99, no. 4, Article ID 041904, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. T. Eberlein, U. Bangert, R. R. Nair et al., “Plasmon spectroscopy of free-standing graphene films,” Physical Review B, vol. 77, no. 23, Article ID 233406, 2008. View at Publisher · View at Google Scholar · View at Scopus