Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2013, Article ID 536302, 9 pages
http://dx.doi.org/10.1155/2013/536302
Research Article

Field Emission Properties of the Graphene Double-Walled Carbon Nanotube Hybrid Films Prepared by Vacuum Filtration and Screen Printing

1Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
2Herbert Gleiter Institute of Nanoscience, Nanjing University of Science & Technology, 200 Xiaolinwei Road, Nanjing 210094, China

Received 26 September 2013; Accepted 25 October 2013

Academic Editor: Hui Xia

Copyright © 2013 Jinzhuo Xu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. H. Fowler and L. Nordheim, “Electron emission in intense electric fields,” Proceedings of the Royal Society of London A, vol. 119, pp. 173–181, 1928. View at Google Scholar
  2. I. Brodie and P. R. Schwoebel, “Vacuum microelectronic devices,” Proceedings of the IEEE, vol. 82, no. 7, pp. 1006–1034, 1994. View at Publisher · View at Google Scholar · View at Scopus
  3. N. De Jonge and J.-M. Bonard, “Carbon nanotube electron sources and applications,” Philosophical Transactions of the Royal Society A, vol. 362, no. 1823, pp. 2239–2266, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. H. J. Kim, J. M. Ha, S. H. Heo, and S. O. Cho, “Small-sized flat-tip CNT emitters for miniaturized X-ray tubes,” Journal of Nanomaterials, vol. 2012, Article ID 854602, 6 pages, 2012. View at Publisher · View at Google Scholar
  5. S. Lee, W. B. Im, J. H. Kang, and D. Y. Jeon, “Low temperature burnable carbon nanotube paste component for carbon nanotube field emitter backlight unit,” Journal of Vacuum Science and Technology B, vol. 23, no. 2, pp. 745–748, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Roh, J. Lee, M. Jang et al., “Characteristic features of stone-wales defects in single-walled carbon nanotube; Adsorption, dispersion, and field emission,” Journal of Nanomaterials, vol. 2010, Article ID 398621, 6 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. X. Li, S. Zuo, W. Liu, Y. He, Z. Xiao, and C. Zhu, “Field emission properties of the dendritic carbon nanotubes film embedded with ZnO quantum dots,” Journal of Nanomaterials, vol. 2011, Article ID 382068, 5 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. W. A. De Heer, A. Châtelain, and D. Ugarte, “A carbon nanotube field-emission electron source,” Science, vol. 270, no. 5239, pp. 1179–1180, 1995. View at Google Scholar · View at Scopus
  9. J. Zhao, J. Zhang, Y. Su, Z. Yang, L. Wei, and Y. Zhang, “Synthesis of straight multi-walled carbon nanotubes by arc discharge in air and their field emission properties,” Journal of Materials Science, vol. 47, pp. 6535–6541, 2012. View at Google Scholar
  10. Y. Saito and S. Uemura, “Field emission from carbon nanotubes and its application to electron sources,” Carbon, vol. 38, no. 2, pp. 169–182, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Yu and D. H. C. Chua, “Effective electron emitters by molybdenum oxide-coated carbon nanotubes core-shell nanostructures,” Journal of Materials Science, vol. 46, no. 14, pp. 4858–4863, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Liu and S. Fan, “Enhancement of field emission properties of cyanoacrylate-carbon nanotube arrays by laser treatment,” Nanotechnology, vol. 15, no. 8, pp. 1033–1037, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. B.-R. Huang, Y.-K. Yang, T.-C. Lin, and W.-L. Yang, “Core-shell structure of a silicon nanorod/carbon nanotube field emission cathode,” Journal of Nanomaterials, vol. 2012, Article ID 369763, 6 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Mohammad, M. B. Khan, T. A. Sherazi, J. Anguita, and D. Adikaari, “Fabrication of vertically aligned CNT composite for membrane applications using chemical vapor deposition through In Situ polymerization,” Journal of Nanomaterials, vol. 2013, Article ID 713583, 5 pages, 2013. View at Publisher · View at Google Scholar
  15. G. F. Malgas, C. J. Arendse, N. P. Cele, and F. R. Cummings, “Effect of mixture ratios and nitrogen carrier gas flow rates on the morphology of carbon nanotube structures grown by CVD,” Journal of Materials Science, vol. 43, no. 3, pp. 1020–1025, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Feng, L. Dai, J. Jiang et al., “Memory emission of printed carbon nanotube cathodes,” Applied Physics Letters, vol. 88, Article ID 203108, 2006. View at Publisher · View at Google Scholar
  17. L. Wang, Y. Chen, T. Chen, W. Que, and Z. Sun, “Optimization of field emission properties of carbon nanotubes cathodes by electrophoretic deposition,” Materials Letters, vol. 61, no. 4-5, pp. 1265–1269, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. Z. Wu, Z. Chen, X. Du et al., “Transparent, conductive carbon nanotube films,” Science, vol. 305, no. 5688, pp. 1273–1276, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Zhang, X. Wang, W. Yang et al., “Interaction between carbon nanotubes and substrate and its implication on field emission mechanism,” Carbon, vol. 44, no. 3, pp. 418–422, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nature Materials, vol. 6, no. 3, pp. 183–191, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. W. Choi, I. Lahiri, R. Seelaboyina, and Y. S. Kang, “Synthesis of graphene and its applications: a review,” Critical Reviews in Solid State and Materials Sciences, vol. 35, no. 1, pp. 52–71, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. I. Lahiri, V. P. Verma, and W. Choi, “An all-graphene based transparent and flexible field emission device,” Carbon, vol. 49, no. 5, pp. 1614–1619, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. B. B. Wang, Q. J. Cheng, X. Chen, and K. Ostrikov, “Enhancement of electron field emission of vertically aligned carbon nanotubes by nitrogen plasma treatment,” Journal of Alloys and Compounds, vol. 509, no. 38, pp. 9329–9334, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. J. J. Wang, M. Y. Zhu, R. A. Outlaw et al., “Free-standing subnanometer qraphite sheets,” Applied Physics Letters, vol. 85, no. 7, pp. 1265–1267, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. A. N. Obraztsov, A. V. Tyurnina, E. A. Obraztsova et al., “Raman scattering characterization of CVD graphite films,” Carbon, vol. 46, no. 6, pp. 963–968, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Sethi and A. Dhinojwala, “Superhydrophobic conductive carbon nanotube coatings for steel,” Langmuir, vol. 25, no. 8, pp. 4311–4313, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. R. G. Forbes, “Simple good approximations for the special elliptic functions in standard Fowler-Nordheim tunneling theory for a Schottky-Nordheim barrier,” Applied Physics Letters, vol. 89, Article ID 113122, 2006. View at Publisher · View at Google Scholar
  28. N. De Jonge, M. Allioux, M. Doytcheva et al., “Characterization of the field emission properties of individual thin carbon nanotubes,” Applied Physics Letters, vol. 85, no. 9, pp. 1607–1609, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Xu, R. Pan, Y. Chen et al., “Electron field emission from screen-printed graphene/DWCNT composite films,” Journal of Alloys and Compounds, vol. 551, pp. 348–351, 2012. View at Google Scholar
  30. R. Czerw, B. Foley, D. Tekleab, A. Rubio, P. M. Ajayan, and D. L. Carroll, “Substrate-interface interactions between carbon nanotubes and the supporting substrate,” Physical Review B, vol. 66, no. 3, Article ID 033408, 2002. View at Google Scholar · View at Scopus
  31. Y. Yao, G. Li, S. Ciston, R. M. Lueptow, and K. A. Gray, “Photoreactive TiO2/carbon nanotube composites: synthesis and reactivity,” Environmental Science and Technology, vol. 42, no. 13, pp. 4952–4957, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Chelvayohan and C. H. B. Mee, “Work function measurements on (110), (100) and (111) surfaces of silver,” Journal of Physics C, vol. 15, no. 10, article 029, pp. 2305–2312, 1982. View at Publisher · View at Google Scholar · View at Scopus