Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2013 (2013), Article ID 538179, 10 pages
http://dx.doi.org/10.1155/2013/538179
Research Article

On the Nature of Electric Current in the Electrospinning Process

1Department of Nonwovens, Faculty of Textile Engineering, Technical University of Liberec, Studentska 2, 461 17 Liberec, Czech Republic
2Textile Engineering Department, Engineering Faculty, Suleyman Demirel University, Cunur, 32260 Isparta, Turkey

Received 8 July 2013; Accepted 23 October 2013

Academic Editor: Tong Lin

Copyright © 2013 Baturalp Yalcinkaya et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. M. Hohman, M. Shin, G. Rutledge, and M. P. Brenner, “Electrospinning and electrically forced jets. I. Stability theory,” Physics of Fluids, vol. 13, no. 8, pp. 2201–2220, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. M. M. Hohman, M. Shin, G. Rutledge, and M. P. Brenner, “Electrospinning and electrically forced jets. II. Applications,” Physics of Fluids, vol. 13, no. 8, pp. 2221–2236, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. M. Shin, M. M. Hohman, M. P. Brenner, and G. C. Rutledge, “Electrospinning: a whipping fluid jet generates submicron polymer fibers,” Applied Physics Letters, vol. 78, no. 8, pp. 1149–1151, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. M. Shin, M. M. Hohman, M. P. Brenner, and G. C. Rutledge, “Experimental characterization of electrospinning: the electrically forced jet and instabilities,” Polymer, vol. 42, no. 25, pp. 9955–9967, 2001. View at Google Scholar · View at Scopus
  5. S. J. Kim, C. K. Lee, and S. I. Kim, “Effect of ionic salts on the processing of poly(2-acrylamido-2-methyl-1- propane sulfonic acid) nanofibers,” Journal of Applied Polymer Science, vol. 96, no. 4, pp. 1388–1393, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. P. K. Bhattacharjee, T. M. Schneider, M. P. Brenner, G. H. McKinley, and G. C. Rutledge, “On the measured current in electrospinning,” Journal of Applied Physics, vol. 107, no. 4, Article ID 044306, pp. 1–8, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. J. M. Deitzel, J. Kleinmeyer, D. Harris, and N. C. B. Tan, “The effect of processing variables on the morphology of electrospun nanofibers and textiles,” Polymer, vol. 42, no. 1, pp. 261–272, 2001. View at Google Scholar · View at Scopus
  8. D. Fallahi, M. Rafizadeh, N. Mohammadi, and B. Vahidi, “Effects of feed rate and solution conductivity on jet current and fiber diameter in electrospinning of polyacrylonitrile solutions,” E-Polymers, vol. 9, no. 1, pp. 1250–1257, 2013. View at Google Scholar
  9. R. Samatham and K. J. Kim, “Electric current as a control variable in the electrospinning process,” Polymer Engineering & Science, vol. 46, no. 7, pp. 954–959, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Fallahi, M. Rafizadeh, N. Mohammadi, and B. Vahidi, “Effect of applied voltage on jet electric current and flow rate in electrospinning of polyacrylonitirile solutions,” Polymer International, vol. 57, no. 12, pp. 1363–1368, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. M. M. Demir, I. Yilgor, E. Yilgor, and B. Erman, “Electrospinning of polyurethane fibers,” Polymer, vol. 43, no. 11, pp. 3303–3309, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. S. A. Theron, E. Zussman, and A. L. Yarin, “Experimental investigation of the governing parameters in the electrospinning of polymer solutions,” Polymer, vol. 45, no. 6, pp. 2017–2030, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. D. Fallahi, M. Rafizadeh, N. Mohammadi, and B. Vahidi, “Effect of applied voltage on surface and volume charge density of the jet in electrospinning of polyacrylonitrile solutions,” Polymer Engineering & Science, vol. 50, no. 7, pp. 1372–1376, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. M. M. Munir, F. Iskandar, K. Khairurrijal, and K. Okuyama, “A constant-current electrospinning system for production of high quality nanofibers,” Review of Scientific Instruments, vol. 79, no. 9, Article ID 093904, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. P. Pokorny, P. Mikes, and D. Lukas, “Measurement of electric current in liquid jet,” in Proceedings of the Nanocon Internatiol Conference, pp. 12–14, Olomouc, Czech Republic, October 2010.
  16. F. Cengiz-Callioglu, O. Jirsak, and M. Dayik, “Electric current in polymer solution jet and spinnability in the needleless electrospinning process,” Fibers and Polymers, vol. 13, no. 10, pp. 1266–1271, 2012. View at Publisher · View at Google Scholar
  17. F. Yener, B. Yalcinkaya, and O. Jirsak, “On the measured current in needle and needleless electrospinning,” Journal of Nanoscience and Nanotechnology, vol. 13, no. 7, pp. 4672–4679, 2013. View at Publisher · View at Google Scholar
  18. A. T. Dao, The role of rheological properties of polymer solutions in needleless electrostatic spinning [Ph.D. thesis], Department of Nonwovens, Technical University of Liberec, Liberec, Czech Republic, 2010.
  19. J. J. Lowke and R. Morrow, “Theory of electric corona including the role of plasma chemistry,” Pure & Applied Chemistry, vol. 66, no. 6, pp. 1287–1294, 1994. View at Publisher · View at Google Scholar
  20. G. F. L. Ferreira, O. N. Oliveira Jr., and J. A. Giacometti, “Point-to-plane corona: current-voltage characteristics for positive and negative polarity with evidence of an electronic component,” Journal of Applied Physics, vol. 59, no. 9, pp. 3045–3049, 1986. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Jaworek and A. Krupa, “Corona discharge from a multipoint electrode in flowing air,” Journal of Electrostatics, vol. 38, no. 3, pp. 187–197, 1996. View at Publisher · View at Google Scholar · View at Scopus
  22. V. E. Kalayci, P. K. Patra, Y. K. Kim, S. C. Ugbolue, and S. B. Warner, “Charge consequences in electrospun polyacrylonitrile (PAN) nanofibers,” Polymer, vol. 46, no. 18, pp. 7191–7200, 2005. View at Publisher · View at Google Scholar · View at Scopus