Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2013, Article ID 542753, 6 pages
http://dx.doi.org/10.1155/2013/542753
Research Article

Hydrogen Adsorption Properties of Nano- and Microstructures of ZnO

1Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
2Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
3Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
4Energy Materials & Surface Science Laboratory, Solar Energy Research Center, School of Chemical Engineering, Chonbuk National University, Jeonju 561-756, Republic of Korea
5Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India

Received 16 May 2013; Revised 31 August 2013; Accepted 10 September 2013

Academic Editor: Xuedong Bai

Copyright © 2013 Rizwan Wahab et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Liu, Y. Y. Fan, M. Liu, H. T. Cong, H. M. Cheng, and M. S. Dresselhaus, “Hydrogen storage in single-walled carbon nanotubes at room temperature,” Science, vol. 286, no. 5442, pp. 1127–1129, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. S.-U. Rather, R. Zacharia, S. W. Hwang, M.-U. Naik, and K. S. Nahm, “Hyperstoichiometric hydrogen storage in monodispersed palladium nanoparticles,” Chemical Physics Letters, vol. 438, no. 1-3, pp. 78–84, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Satyapal, J. Petrovic, and G. Thomas, “Gassing up with hydrogen,” Scientific American, vol. 296, no. 4, pp. 80–87, 2007. View at Google Scholar · View at Scopus
  4. M. S. Dresselhaus and I. L. Thomas, “Alternative energy technologies,” Nature, vol. 414, no. 6861, pp. 332–337, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Sakintuna, F. Lamari-Darkrim, and M. Hirscher, “Metal hydride materials for solid hydrogen storage: a review,” International Journal of Hydrogen Energy, vol. 32, no. 9, pp. 1121–1140, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. A. M. Seayad and D. M. Antonell, “Recent advances in hydrogen storage in metal-containing inorganic nanostructures and related materials,” Advanced Materials, vol. 16, no. 9-10, pp. 765–777, 2004. View at Google Scholar · View at Scopus
  7. F. E. Pinkerton and B. G. Wicke, “Bottling the hydrogen genie,” The Industrial Physicist, vol. 10, no. 1, pp. 20–23, 2004. View at Google Scholar · View at Scopus
  8. F. Schüth, “Hydrogen and hydrates,” Nature, vol. 434, no. 7034, pp. 712–713, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. F. Sclüth, B. Bogdanović, and M. Felderhoff, “Light metal hydrides and complex hydrides for hydrogen storage,” Chemical Communications, vol. 10, no. 20, pp. 2249–2258, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. A. G. Wong-Foy, A. J. Matzger, and O. M. Yaghi, “Exceptional H2 saturation uptake in microporous metal-organic frameworks,” Journal of the American Chemical Society, vol. 128, no. 11, pp. 3494–3495, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Chambers, C. Park, R. T. K. Baker, and N. M. Rodriguez, “Hydrogen storage in grap-hite nanofibers,” The Journal of Physical Chemistry B, vol. 102, pp. 4253–4256, 1998. View at Publisher · View at Google Scholar
  12. M. H. Huang, S. Mao, H. Feick et al., “Room-temperature ultraviolet nanowire nanolasers,” Science, vol. 292, no. 5523, pp. 1897–1899, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. Q. Wan, C. L. Lin, X. B. Yu, and T. H. Wang, “Room-temperature hydrogen storage characteristics of ZnO nanowires,” Applied Physics Letters, vol. 84, no. 1, pp. 124–126, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. Z. L. Wang, “Nanostructures of zinc oxide,” Materials Today, vol. 7, no. 6, pp. 26–33, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Chen, D. M. Bagnall, H.-J. Koh et al., “Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: growth and characterization,” Journal of Applied Physics, vol. 84, no. 7, pp. 3912–3918, 1998. View at Google Scholar · View at Scopus
  16. G. Sberveglieri, S. Groppelli, P. Nelli, A. Tintinelli, and G. Giunta, “A novel method for the preparation of NH3 sensors based on ZnO-In thin films,” Sensors and Actuators B, vol. 25, no. 1–3, pp. 588–590, 1995. View at Google Scholar · View at Scopus
  17. Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts of semiconducting oxides,” Science, vol. 291, no. 5510, pp. 1947–1949, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. J. Xing, Z. H. Xi, Z. Q. Xue et al., “Optical properties of the ZnO nanotubes synthesized via vapor phase growth,” Applied Physics Letters, vol. 83, no. 9, pp. 1689–1691, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Y. Li, C. Y. Lee, and T. Y. Tseng, “Copper-catalyzed ZnO nanowires on silicon (1 0 0) grown by vapor-liquid-solid process,” Journal of Crystal Growth, vol. 247, no. 3-4, pp. 357–362, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Wahab, S. G. Ansari, Y. S. Kim et al., “Low temperature solution synthesis and characterization of ZnO nano-flowers,” Materials Research Bulletin, vol. 42, no. 9, pp. 1640–1648, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Wahab, S. G. Ansari, Y.-S. Kim, H.-K. Seo, and H.-S. Shin, “Room temperature synthesis of needle-shaped ZnO nanorods via sonochemical method,” Applied Surface Science, vol. 253, no. 18, pp. 7622–7626, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Wahab, Z. A. Ansari, S. G. Ansari et al., “Hydrogen storage properties of heterostructured zinc oxide nanostructures,” Journal of Nanoengineering and Nanomanufacturing, vol. 1, pp. 188–195, 2011. View at Publisher · View at Google Scholar
  23. D. Ramimoghadam, M. Z. B. Hussein, and Y. H. Taufiq-Yap, “Hydrothermal synthesis of zinc oxide nanoparticles using rice as soft biotemplate,” Chemistry Central Journal, vol. 7, pp. 136–145, 2013. View at Publisher · View at Google Scholar
  24. D. Ramimoghadam, M. Z. B. Hussein, and Y. H. Taufiq-Yap, “The effect of sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB) on the properties of ZnO synthesized by hydrothermal method,” International Journal of Molecular Sciences, vol. 13, pp. 13275–13293, 2012. View at Publisher · View at Google Scholar