Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2013 (2013), Article ID 561534, 7 pages
http://dx.doi.org/10.1155/2013/561534
Research Article

Influence of TiO2 Nanoparticles on Enhancement of Optoelectronic Properties of PFO-Based Light Emitting Diode

1School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia
2Department of Physics, Faculty of Science, Sana’a University, Sana’a, Yemen
3Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia

Received 4 July 2013; Revised 25 September 2013; Accepted 25 September 2013

Academic Editor: Yanbao Zhao

Copyright © 2013 Bandar Ali Al-Asbahi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. V. Madhava Rao, Y. K. Su, T. S. Huang, C.-H. Yeh, and M.-L. Tu, “Electroluminescent characteristics of DBPPV-ZnO nanocomposite polymer light emitting devices,” Nanoscale Research Letters, vol. 4, no. 5, pp. 485–490, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Willander, O. Nur, S. Zaman, A. Zainelabdin, N. Bano, and I. Hussain, “Zinc oxide nanorods/polymer hybrid heterojunctions for white light emitting diodes,” Journal of Physics D, vol. 44, no. 22, Article ID 224017, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Cocchi, J. Kalinowski, D. Virgili, and J. A. G. Williams, “Excimer-based red/near-infrared organic light-emitting diodes with very high quantum efficiency,” Applied Physics Letters, vol. 92, no. 11, Article ID 113302, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. M. C. Suh, H. K. Chung, S.-Y. Kim, J. H. Kwon, and B. D. Chin, “Cathode diffusion and degradation mechanism of polymeric light emitting devices,” Chemical Physics Letters, vol. 413, no. 1–3, pp. 205–209, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Yang and P. H. Holloway, “Electroluminescence from hybrid conjugated polymer-Cds:Mn/ZnS core/shell nanocrystals devices,” Journal of Physical Chemistry B, vol. 107, no. 36, pp. 9705–9710, 2003. View at Google Scholar · View at Scopus
  6. M. J. Tommalieh and A. M. Zihlif, “Optical properties of polyimide/silica nanocomposite,” Physica B: Condensed Matter, vol. 405, no. 23, pp. 4750–4754, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Kongsinlark, G. L. Rempel, and P. Prasassarakich, “Synthesis of monodispersed polyisoprene-silica nanoparticles via differential microemulsion polymerization and mechanical properties of polyisoprene nanocomposite,” Chemical Engineering Journal, vol. 193-194, pp. 215–226, 2012. View at Google Scholar
  8. J. Rozra, I. Saini, A. Sharma et al., “Cu nanoparticles induced structural, optical and electrical modification in PVA,” Materials Chemistry and Physics, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Dovgolevsky, S. Kirmayer, E. Lakin, Y. Yang, C. J. Brinker, and G. L. Frey, “Self-assembled conjugated polymer-surfactant-silica mesostructures and their integration into light-emitting diodes,” Journal of Materials Chemistry, vol. 18, no. 4, pp. 423–436, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Cirpan, L. Ding, and F. E. Karasz, “Optical and electroluminescent properties of polyfluorene copolymers and their blends,” Polymer, vol. 46, no. 3, pp. 811–817, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. M. H. H. Jumali, B. A. Al-Asbahi, C. C. Yap, M. M. Salleh, and M. S. Alsalhi, “Optoelectronic property enhancement of conjugated polymer in poly (9,9-di-n-octylfluorenyl-2.7-diyl)/titania nanocomposites,” Thin Solid Films, vol. 524, pp. 257–262, 2012. View at Publisher · View at Google Scholar
  12. M. Bajpai, R. Srivastava, M. N. Kamalasanan, R. S. Tiwari, and S. Chand, “Charge transport and microstructure in PFO:MEH-PPV polymer blend thin films,” Synthetic Metals, vol. 160, no. 15-16, pp. 1740–1744, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Skompska, “Hybrid conjugated polymer/semiconductor photovoltaic cells,” Synthetic Metals, vol. 160, no. 1-2, pp. 1–15, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. A. C. Arango, S. A. Carter, and P. J. Brock, “Charge transfer in photovoltaics consisting of interpenetrating networks of conjugated polymer and TiO2 nanoparticles,” Applied Physics Letters, vol. 74, no. 12, pp. 1698–1700, 1999. View at Google Scholar · View at Scopus
  15. A. M. Assaka, P. C. Rodrigues, A. R. M. De Oliveira et al., “Novel fluorine containing polyfluorenes with efficient blue electroluminescence,” Polymer, vol. 45, no. 21, pp. 7071–7081, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Sakamoto, K. Usami, Y. Uehara, and S. Ushioda, “Excellent uniaxial alignment of poly(9,9-dioctylfluorenyl-2,7-diyl) induced by photoaligned polyimide films,” Applied Physics Letters, vol. 87, no. 21, Article ID 211910, 3 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. B. Arredondo, B. Romero, A. Gutiérrez-Llorente et al., “On the electrical degradation and green band formation in α- and β-phase poly(9,9-dioctyfluorene) polymer light-emitting diodes,” Solid-State Electronics, vol. 61, no. 1, pp. 46–52, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. Z. Chen and D. Ma, “Improved color purity and efficiency in polyfluorene-based light-emitting diodes,” Materials Science and Engineering B, vol. 141, no. 1-2, pp. 71–75, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. X. Gong, P. K. Iyer, D. Moses, G. C. Bazan, A. J. Heeger, and S. S. Xiao, “Stabilized blue emission from polyfluorene-based light-emitting diodes: elimination of fluorenone defects,” Advanced Functional Materials, vol. 13, no. 4, pp. 325–330, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. A. P. Kulkarni, C. J. Tonzola, A. Babel, and S. A. Jenekhe, “Electron transport materials for organic light-emitting diodes,” Chemistry of Materials, vol. 16, no. 23, pp. 4556–4573, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. S. H. Kim, S. H. Park, and K. Lee, “Efficiency enhancement in polymer optoelectronic devices by introducing titanium sub-oxide layer,” Current Applied Physics, vol. 10, no. 3, pp. S528–S531, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. C.-H. Hsiao, S.-W. Liu, C.-T. Chen, and J.-H. Lee, “Emitting layer thickness dependence of color stability in phosphorescent organic light-emitting devices,” Organic Electronics, vol. 11, no. 9, pp. 1500–1506, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. R.-H. Lee and H.-H. Lai, “Enhancing electroluminescence performance of MEH-PPV based polymer light emitting device via blending with organosoluble polyhedral oligomeric silsesquioxanes,” European Polymer Journal, vol. 43, no. 3, pp. 715–724, 2007. View at Publisher · View at Google Scholar · View at Scopus