Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2013 (2013), Article ID 612894, 7 pages
http://dx.doi.org/10.1155/2013/612894
Research Article

Synthesis and Magnetorheology Study of Iron Oxide and Iron Cobalt Oxide Suspensions

1Institute of Organic and Polymeric Materials, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao E. Road, Taipei 10648, Taiwan
2Center Condensed Matter Science, National Taiwan University, Taipei, Taiwan

Received 9 March 2013; Revised 25 May 2013; Accepted 27 May 2013

Academic Editor: Anjan Barman

Copyright © 2013 Syang-Peng Rwei et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. Bica, “Influence of the transverse magnetic field intensity upon the electric resistance of the magnetorheological elastomer containing graphite microparticles,” Materials Letters, vol. 63, no. 26, pp. 2230–2232, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. J. H. Kim, F. F. Fang, H. J. Choi, and Y. Seo, “Magnetic composites of conducting polyaniline/nano-sized magnetite and their magnetorheology,” Materials Letters, vol. 62, no. 17-18, pp. 2897–2899, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. W. H. Li, C. Lynam, J. Chen, B. Liu, X. Z. Zhang, and G. G. Wallace, “Magnetorheology of single-walled nanotube dispersions,” Materials Letters, vol. 61, no. 14-15, pp. 3116–3118, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. C. C. Ekwebelam and H. See, “Using oscillatory shear to probe the effects of bidispersity in inverse ferrofluids,” Korea Australia Rheology Journal, vol. 19, no. 1, pp. 35–42, 2007. View at Google Scholar · View at Scopus
  5. H. Pu, F. Jiang, and Z. Yang, “Studies on preparation and chemical stability of reduced iron particles encapsulated with polysiloxane nano-films,” Materials Letters, vol. 60, no. 1, pp. 94–97, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. W. H. Li and X. Z. Zhang, “The effect of friction on magnetorheological fluids,” Korea Australia Rheology Journal, vol. 20, no. 2, pp. 45–50, 2008. View at Google Scholar · View at Scopus
  7. S. P. Rwei, H. Y. Lee, S. D. Yoo, L. Y. Wang, and J. G. Lin, “Magnetorheological characteristics of aqueous suspensions that contain Fe3O4 nanoparticles,” Colloid and Polymer Science, vol. 283, no. 11, pp. 1253–1258, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Rabinow, “The magnetic fluid clutch,” Transactions of the American Institute of Electrical Engineers, vol. 67, no. 2, pp. 1308–1315, 1948. View at Google Scholar
  9. I. Bica, “The influence of the magnetic field on the electrical magnetoresistance of magnetorheological suspensions,” Journal of Magnetism and Magnetic Materials, vol. 299, no. 2, pp. 412–418, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Stanway, “Smart fluids: current and future developments,” Materials Science and Technology, vol. 20, no. 8, pp. 931–939, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Chakrabarti, S. K. Mandal, and S. Chaudhuri, “Cobalt doped γ-Fe2O3 nanoparticles: synthesis and magnetic properties,” Nanotechnology, vol. 16, no. 4, pp. 506–511, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. S. K. Mandal, “Fluorescent magnetic emulsion droplets: potential material for multiplexed optical coding of biomolecules,” Journal of Magnetism and Magnetic Materials, vol. 311, no. 1, pp. 88–91, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. S. K. Mandal, N. Lequeux, B. Rotenberg et al., “Encapsulation of magnetic and fluorescent nanoparticles in emulsion droplets,” Langmuir, vol. 21, no. 9, pp. 4175–4179, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. H. R. Brand and H. Pleiner, “Origin of the slow wave in a magnetorheological slurry,” Physical Review Letters, vol. 86, pp. 1385–1385, 2000. View at Google Scholar
  15. M. Liţǎ, N. C. Popa, C. Velescu, and L. N. Vékás, “Investigations of a magnetorheological fluid damper,” IEEE Transactions on Magnetics, vol. 40, no. 2 I, pp. 469–472, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Böse, “Viscoelastic properties of silicone-based magnetorheological elastomers,” International Journal of Modern Physics B, vol. 21, no. 28-29, pp. 4790–4797, 2007. View at Google Scholar · View at Scopus
  17. H. See, C. Joung, and C. Ekwebelam, “Dynamic behavior and yielding of field-responsive particulate suspensions,” International Journal of Modern Physics B, vol. 21, no. 28-29, pp. 4945–4951, 2007. View at Google Scholar · View at Scopus
  18. R. C. Bell, E. D. Miller, J. O. Karli, A. N. Vavreck, and D. T. Zimmerman, “Influence of particle shape on the properties of magnetorheological fluids,” International Journal of Modern Physics B, vol. 21, no. 28-29, pp. 5018–5025, 2007. View at Google Scholar · View at Scopus
  19. F. A. Morrison, Understanding Rheology, Guernsey, UK, 2001.
  20. T. Hyeon, Y. Chung, J. Park, S. S. Lee, Y.-W. Kim, and B. H. Park, “Synthesis of highly crystalline and monodisperse cobalt ferrite nanocrystals,” Journal of Physical Chemistry B, vol. 106, no. 27, pp. 6831–6833, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Hayashi, W. Sakamoto, and T. Yogo, “Magnetic and rheological properties of monodisperse Fe3O4 nanoparticle/organic hybrid,” Journal of Magnetism and Magnetic Materials, vol. 321, no. 5, pp. 450–457, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Kida, C. Yamamoto, M. Doi, H. Asano, and M. Matsui, “Magnetoresistance of trilayer films with Fe3O4,” Journal of Magnetism and Magnetic Materials, vol. 272–276, no. 1, pp. e1559–e1561, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. M. M. Rashad, R. M. Mohamed, and H. El-Shall, “Magnetic properties of nanocrystalline Sm-substituted CoFe2O4 synthesized by citrate precursor method,” Journal of Materials Processing Technology, vol. 198, no. 1–3, pp. 139–146, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. L. A. García Cerda and S. M. Montemayor, “Synthesis of CoFe2O4 nanoparticles embedded in a silica matrix by the citrate precursor technique,” Journal of Magnetism and Magnetic Materials, vol. 294, no. 2, pp. e43–e46, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. D. Maity and D. C. Agrawal, “Synthesis of iron oxide nanoparticles under oxidizing environment and their stabilization in aqueous and non-aqueous media,” Journal of Magnetism and Magnetic Materials, vol. 308, no. 1, pp. 46–55, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. C. L. Nehl, H. Liao, and J. H. Hafner, “Optical properties of star-shaped gold nanoparticles,” Nano Letters, vol. 6, no. 4, pp. 683–688, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Yang, J. Wu, and Y. Hou, “Fe3O4 nanostructures: synthesis, growth mechanism, properties and applications,” Chemical Communications, vol. 47, no. 18, pp. 5130–5141, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. W. W. Yu, J. C. Falkner, C. T. Yavuz, and V. L. Colvin, “Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition of iron carboxylate salts,” Chemical Communications, vol. 10, no. 20, pp. 2306–2307, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Hernando, I. Navarro, C. Prados, D. García, M. Vázquez, and J. Alonso, “Curie-temperature enhancement of ferromagnetic phases in nanoscale heterogeneous systems,” Physical Review B, vol. 53, no. 13, pp. 8223–8226, 1996. View at Google Scholar
  30. S.-Y. Zhao, K. L. Don, W. K. Chang, G. C. Hyun, H. K. Young, and S. K. Young, “Synthesis of magnetic nanoparticles of Fe3O4 and CoFe2O4 and their surface modification by surfactant adsorption,” Bulletin of the Korean Chemical Society, vol. 27, no. 2, pp. 237–242, 2006. View at Google Scholar · View at Scopus
  31. S. Sun, H. Zeng, D. B. Robinson et al., “Monodisperse MFe2O4 (M = Fe, Co, Mn) Nanoparticles,” Journal of the American Chemical Society, vol. 126, no. 1, pp. 273–279, 2004. View at Google Scholar · View at Scopus