Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2013 (2013), Article ID 613102, 14 pages
http://dx.doi.org/10.1155/2013/613102
Research Article

Manufacturing of Nanostructured Rings from Previously ECAE-Processed AA5083 Alloy by Isothermal Forging

Mechanical, Energetics, and Materials Engineering Department, Public University of Navarre, Campus de Arrosadia s/n, 31006 Pamplona, Spain

Received 16 April 2013; Revised 1 July 2013; Accepted 1 July 2013

Academic Editor: Sheng-Rui Jian

Copyright © 2013 C. J. Luis et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Z. Valiev and T. G. Langdon, “Principles of equal-channel angular pressing as a processing tool for grain refinement,” Progress in Materials Science, vol. 51, no. 7, pp. 881–981, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. T. G. Langdon, “The principles of grain refinement in equal-channel angular pressing,” Materials Science and Engineering A, vol. 462, no. 1-2, pp. 3–11, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. V. M. Segal, “Equal channel angular extrusion: from macromechanics to structure formation,” Materials Science and Engineering A, vol. 271, no. 1-2, pp. 322–333, 1999. View at Google Scholar · View at Scopus
  4. Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, and T. G. Langdon, “Principle of equal-channel angular pressing for the processing of ultra-fine grained materials,” Scripta Materialia, vol. 35, no. 2, pp. 143–146, 1996. View at Publisher · View at Google Scholar · View at Scopus
  5. C. J. Luis Pérez, “On the correct selection of the channel die in ECAP processes,” Scripta Materialia, vol. 50, no. 3, pp. 387–393, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. B. Huarte, C. J. Luis, I. Puertas, J. León, and R. Luri, “Optical and mechanical properties of an Al-Mg alloy processed by ECAE,” Journal of Materials Processing Technology, vol. 162-163, pp. 317–326, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Kapoor and J. K. Chakravartty, “Deformation behavior of an ultrafine-grained Al-Mg alloy produced by equal-channel angular pressing,” Acta Materialia, vol. 55, no. 16, pp. 5408–5418, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. M. D. Sangid, G. J. Pataky, H. Sehitoglu, R. G. Rateick, T. Niendorf, and H. J. Maier, “Superior fatigue crack growth resistance, irreversibility, and fatigue crack growth-microstructure relationship of nanocrystalline alloys,” Acta Materialia, vol. 59, no. 19, pp. 7340–7355, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. T. Zhu, T. C. Lowe, and T. G. Langdon, “Performance and applications of nanostructured materials produced by severe plastic deformation,” Scripta Materialia, vol. 51, no. 8, pp. 825–830, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Ferrasse, V. M. Segal, F. Alford, J. Kardokus, and S. Strothers, “Scale up and application of equal-channel angular extrusion for the electronics and aerospace industries,” Materials Science and Engineering A, vol. 493, no. 1-2, pp. 130–140, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Poortmans, L. Duchêne, A. M. Habraken, and B. Verlinden, “Modelling compression tests on aluminium produced by equal channel angular extrusion,” Acta Materialia, vol. 57, no. 6, pp. 1821–1830, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. A. S. M. Agena, “A study of flow characteristics of nanostructured Al-6082 alloy produced by ECAP under upsetting test,” Journal of Materials Processing Technology, vol. 209, no. 2, pp. 856–863, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. C. J. Luis-Pérez, I. Puertas, D. Salcedo, J. León, and I. Pérez, “Comparison between FEM and experimental results in the upsetting of nano-structured materials,” Materials Science Forum, vol. 713, pp. 31–36, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. G. Jin, H. M. Baek, Y.-T. Im, and B. C. Jeon, “Continuous ECAP process design for manufacturing a microstructure-refined bolt,” Materials Science and Engineering A, vol. 530, no. 1, pp. 462–468, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. J. S. Choi, S. Nawaz, S. K. Hwang, H. C. Lee, and Y. T. Im, “Forgeability of ultra-fine grained aluminum alloy for bolt forming,” International Journal of Mechanical Sciences, vol. 52, no. 10, pp. 1269–1276, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Yanagida, K. Joko, and A. Azushima, “Formability of steels subjected to cold ECAE process,” Journal of Materials Processing Technology, vol. 201, no. 1–3, pp. 390–394, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. P. K. Chaudhury, B. Cherukuri, and R. Srinivasan, “Scaling up of equal-channel angular pressing and its effect on mechanical properties, microstructure, and hot workability of AA 6061,” Materials Science and Engineering A, vol. 410-411, pp. 316–318, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. J. H. Lee, S. H. Kang, and D. Y. Yang, “Novel forging technology of a magnesium alloy impeller with twisted blades of micro-thickness,” CIRP Annals, vol. 57, no. 1, pp. 261–264, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. I. Puertas, C. J. Luis Pérez, D. Salcedo, J. León, J. P. Fuertes, and R. Luri, “Design and mechanical property analysis of AA1050 turbine blades manufactured by equal channel angular extrusion and isothermal forging,” Materials and Design, vol. 52, pp. 774–784, 2013. View at Google Scholar
  20. T. Altan, G. Ngaile, and G. Shen, Cold and Hot Forging: Fundamentals and Applications, ASM International, Materials Park, Ohio, USA, 2005.
  21. K. H. Jung, D. K. Kim, Y. T. Im, and Y. S. Lee, “Prediction of the effects of hardening and texture heterogeneities by finite element analysis based on the Taylor model,” International Journal of Plasticity, vol. 42, pp. 120–140, 2013. View at Google Scholar
  22. D. Salcedo, C. J. Luis-Pérez, J. León, R. Luri, and I. Puertas, “A method for obtaining spur gears from nanostructured materials,” Advanced Materials Research, vol. 498, pp. 7–12, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. C. J. Luis, D. Salcedo, J. León, R. Luri, I. Puertas, and J. P. Fuertes, “Procedimiento de fabricación de elementos mecánicos de geometría hueca con estructura submicrométrica o nanométrica,” Número de solicitud: P201330404, Fecha de recepción: 20/03/2013, Oficina receptora: OEPM Madrid, Patent Pending.
  24. E. A. El-Danaf, “Mechanical properties, microstructure and texture of single pass equal channel angular pressed 1050, 5083, 6082 and 7010 aluminum alloys with different dies,” Materials and Design, vol. 32, no. 7, pp. 3838–3853, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. X. Sauvage, G. Wilde, S. V. Divinski, Z. Horita, and R. Z. Valiev, “Grain boundaries in ultrafine grained materials processed by severe plastic deformation and related phenomena,” Materials Science and Engineering A, vol. 540, pp. 1–12, 2012. View at Publisher · View at Google Scholar · View at Scopus