Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2013, Article ID 613638, 9 pages
http://dx.doi.org/10.1155/2013/613638
Research Article

Electrospun Hyaluronan-Gelatin Nanofibrous Matrix for Nerve Tissue Engineering

1Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
2Department of Life Sciences, National Taiwan Ocean University, Keelung 20224, Taiwan

Received 23 July 2013; Revised 25 September 2013; Accepted 26 September 2013

Academic Editor: In-Kyu Park

Copyright © 2013 Hau-Min Liou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. A. Ferguson and Y. J. Son, “Extrinsic and intrinsic determinants of nerve regeneration,” Journal of Tissue Engineering, vol. 2, no. 1, 2011. View at Google Scholar
  2. C. E. Schmidt and J. B. Leach, “Neural tissue engineering: strategies for repair and regeneration,” Annual Review of Biomedical Engineering, vol. 5, pp. 293–347, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. T. E. Trumble and F. G. Shon, “The physiology of nerve transplantation,” Hand Clinics, vol. 16, no. 1, pp. 105–122, 2000. View at Google Scholar · View at Scopus
  4. R. E. Gámez Sazo, K. Maenaka, W. Gu, P. M. Wood, and M. B. Bunge, “Fabrication of growth factor- and extracellular matrix-loaded, gelatin-based scaffolds and their biocompatibility with Schwann cells and dorsal root ganglia,” Biomaterials, vol. 33, no. 33, pp. 8529–8539, 2012. View at Google Scholar
  5. J. M. Medina, A. Thomas, and C. R. Denegar, “Knee osteoarthritis: should your patient opt for hyaluronic acid injection?” Journal of Family Practice, vol. 55, no. 8, pp. 669–675, 2006. View at Google Scholar · View at Scopus
  6. E. Nyman, F. Huss, T. Nyman, J. Junker, and G. Kratz, “Hyaluronic acid, an important factor in the wound healing properties of amniotic fluid: in vitro studies of re-epithelialisation in human skin wounds,” Journal of Plastic Surgery and Hand Surgery, vol. 47, no. 2, pp. 89–92, 2013. View at Google Scholar
  7. G. Y. Özgenel, “Effects of hyaluronic acid on peripheral nerve scarring and regeneration in rats,” Microsurgery, vol. 23, no. 6, pp. 575–581, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Taipale and J. Keski-Oja, “Growth factors in the extracellular matrix,” FASEB Journal, vol. 11, no. 1, pp. 51–59, 1997. View at Google Scholar · View at Scopus
  9. F. Berthiaume, P. V. Moghe, M. Toner, and M. L. Yarmush, “Effect of extracellular matrix topology on cell structure, function, and physiological responsiveness: hepatocytes cultured in a sandwich configuration,” FASEB Journal, vol. 10, no. 13, pp. 1471–1484, 1996. View at Google Scholar · View at Scopus
  10. C. Li, C. Vepari, H.-J. Jin, H. J. Kim, and D. L. Kaplan, “Electrospun silk-BMP-2 scaffolds for bone tissue engineering,” Biomaterials, vol. 27, no. 16, pp. 3115–3124, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. M. G. Burnett and E. L. Zager, “Pathophysiology of peripheral nerve injury: a brief review,” Neurosurgical Focus, vol. 16, no. 5, article E1, 2004. View at Google Scholar · View at Scopus
  12. S. S. Scherer and J. Salzer, “Axon-Schwann cell interaction during peripheral nerve degeneration and regeneration,” in Glial Cell Development, pp. 299–330, Oxford University Press, London, UK, 2003. View at Google Scholar
  13. J. Hu, J. Zhou, X. Li, F. Wang, and L. Hezuo, “Schwann cells promote neurite outgrowth of dorsal root ganglion neurons through secretion of nerve growth factor,” Indian Journal of Experimental Biology, vol. 49, no. 3, pp. 177–182, 2011. View at Google Scholar · View at Scopus
  14. A. I. Gravvanis, A. A. Lavdas, A. Papalois, D. A. Tsoutsos, and R. Matsas, “The beneficial effect of genetically engineered Schwann cells with enhanced motility in peripheral nerve regeneration: review,” Acta Neurochirurgica, vol. 100, pp. 51–56, 2007. View at Google Scholar · View at Scopus
  15. F.-Y. Hsu, Y.-S. Hung, H.-M. Liou, and C.-H. Shen, “Electrospun hyaluronate-collagen nanofibrous matrix and the effects of varying the concentration of hyaluronate on the characteristics of foreskin fibroblast cells,” Acta Biomaterialia, vol. 6, no. 6, pp. 2140–2147, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Hong, I. Peptan, P. Clark, and J. J. Mao, “Ex vivo adipose tissue engineering by human marrow stromal cell seeded gelatin sponge,” Annals of Biomedical Engineering, vol. 33, no. 4, pp. 511–517, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. C. Chen, W. Y. Su, S. H. Yang, A. Gefen, and F. H. Lin, “In situ forming hydrogels composed of oxidized high molecular weight hyaluronic acid and gelatin for nucleus pulposus regeneration,” Acta Biomaterialia, vol. 9, no. 2, pp. 5181–5193, 2013. View at Google Scholar
  18. Y. Liu, X. Z. Shu, S. D. Gray, and G. D. Prestwich, “Disulfide-crosslinked hyaluronan-gelatin sponge: growth of fibrous tissue in vivo,” Journal of Biomedical Materials Research A, vol. 68, no. 1, pp. 142–149, 2004. View at Google Scholar · View at Scopus
  19. H. M. Lin, Y. H. Lin, and F. Y. Hsu, “Preparation and characterization of mesoporous bioactive glass/polycaprolactone nanofibrous matrix for bone tissues engineering,” Journal of Materials Science: Materials in Medicine, vol. 23, no. 11, pp. 2619–2630, 2012. View at Google Scholar
  20. K. S. Park, K. J. Cha, I. B. Han et al., “Mass-producible nano-featured polystyrene surfaces for regulating the differentiation of human adipose-derived stem cells,” Macromolecular Bioscience, vol. 12, no. 11, pp. 1480–1489, 2012. View at Google Scholar
  21. C. Xu, R. Inai, M. Kotaki, and S. Ramakrishna, “Electrospun nanofiber fabrication as synthetic extracellular matrix and its potential for vascular tissue engineering,” Tissue Engineering, vol. 10, no. 7-8, pp. 1160–1168, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Laurent, “The biology of hyaluronan. Introduction,” Ciba Foundation Symposium, vol. 143, pp. 1–20, 1989. View at Google Scholar · View at Scopus
  23. B. P. Toole and M. G. Slomiany, “Hyaluronan: a constitutive regulator of chemoresistance and malignancy in cancer cells,” Seminars in Cancer Biology, vol. 18, no. 4, pp. 244–250, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Cencetti, D. Bellini, C. Longinotti, A. Martinelli, and P. Matricardi, “Preparation and characterization of a new gellan gum and sulphated hyaluronic acid hydrogel designed for epidural scar prevention,” Journal of Materials Science: Materials in Medicine, vol. 22, no. 2, pp. 263–271, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. J. B. Park, H.-J. Kwak, and S.-H. Lee, “Role of hyaluronan in glioma invasion,” Cell Adhesion & Migration, vol. 2, no. 3, pp. 202–207, 2008. View at Google Scholar · View at Scopus
  26. M. A. Solis, Y.-H. Chen, T. Y. Wong, V. Z. Bittencourt, Y.-C. Lin, and L. L. H. Huang, “Hyaluronan regulates cell behavior: a potential niche matrix for stem cells,” Biochemistry Research International, vol. 2012, Article ID 346972, 11 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. L. S. Sherman, T. A. Rizvi, S. Karyala, and N. Ratner, “CD44 enhances neuregulin signaling by Schwann cells,” Journal of Cell Biology, vol. 150, no. 5, pp. 1071–1083, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. T. Wei, W. M. Tian, X. Yu et al., “Hyaluronic acid hydrogels with IKVAV peptides for tissue repair and axonal regeneration in an injured rat brain,” Biomedical Materials, vol. 2, no. 3, pp. S142–S146, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. Z. Z. Khaing and C. E. Schmidt, “Advances in natural biomaterials for nerve tissue repair,” Neuroscience Letters, vol. 519, no. 2, pp. 103–114, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. K. K. Wang, I. R. Nemeth, and B. R. Seckel, “Hyaluronic acid enhances peripheral nerve regeneration in vivo,” Microsurgery, vol. 18, no. 4, pp. 270–275, 1998. View at Google Scholar
  31. L. S. Sherman, T. A. Rizvi, S. Karyala, and N. Ratner, “CD44 enhances neuregulin signaling by Schwann cells,” Journal of Cell Biology, vol. 150, no. 5, pp. 1071–1083, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. K.-A. Nave and J. L. Salzer, “Axonal regulation of myelination by neuregulin 1,” Current Opinion in Neurobiology, vol. 16, no. 5, pp. 492–500, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Ghatak, S. Misra, and B. P. Toole, “Hyaluronan constitutively regulates ErbB2 phosphorylation and signaling complex formation in carcinoma cells,” Journal of Biological Chemistry, vol. 280, no. 10, pp. 8875–8883, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. P. A. Coulombe and P. Wong, “Cytoplasmic intermediate filaments revealed as dynamic and multipurpose scaffolds,” Nature Cell Biology, vol. 6, no. 8, pp. 699–706, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. D. Triolo, G. Dina, I. Lorenzetti et al., “Loss of glial fibrillary acidic protein (GFAP) impairs Schwann cell proliferation and delays nerve regeneration after damage,” Journal of Cell Science, vol. 119, no. 19, pp. 3981–3993, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. D. D'Urso, P. J. Brophy, S. M. Staugaitis et al., “Protein zero of peripheral nerve myelin: biosynthesis, membrane insertion, and evidence for homotypic interaction,” Neuron, vol. 4, no. 3, pp. 449–460, 1990. View at Publisher · View at Google Scholar · View at Scopus
  37. D. M. Menichella, E. J. Arroyo, R. Awatramani et al., “Protein Zero is necessary for E-cadherin-mediated adherens junction formation in Schwann cells,” Molecular and Cellular Neuroscience, vol. 18, no. 6, pp. 606–618, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. L. B. Spiryda, “Myelin protein zero and membrane adhesion,” Journal of Neuroscience Research, vol. 54, no. 2, pp. 137–146, 1998. View at Google Scholar