Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2013 (2013), Article ID 621378, 6 pages
Research Article

Influence of Sodium Dodecyl Sulfonate on the Formation of ZnO Nanorods from ε-Zn(OH)2

Department of Chemical Engineering, Tsinghua University, Beijing 10084, China

Received 28 December 2012; Accepted 18 April 2013

Academic Editor: Yunpeng Yin

Copyright © 2013 Jing Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The influence of sodium dodecyl sulfonate (SDSN) on the formation of ZnO nanorods from ε-Zn(OH)2 was investigated in this paper. The ε-Zn(OH)2 precursor was prepared at room temperature using ZnSO4 and NaOH as the reactants and then converted to ZnO nanorods after aging at 80°C in NaOH solution containing a minor amount of sodium dodecyl sulfonate (SDSN). The experimental results and the molecular simulation revealed that the influence of SDSN on the formation of ZnO from ε-Zn(OH)2 should be attributed to the adsorption of SDSN on ε-Zn(OH)2 surfaces, which inhibited the dissolution of ε-Zn(OH)2 in NaOH solution, leading to the formation of the ZnO nanorods with a diameter of 50–200 nm, a length of 3.0–15.0 μm, and an aspect ratio of 30–100.