Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2013, Article ID 627215, 16 pages
Review Article

Carbon Nanotubes for Thin Film Transistor: Fabrication, Properties, and Applications

School of Electronic and Computer Engineering, Peking University, Shenzhen 518055, China

Received 5 April 2013; Accepted 25 May 2013

Academic Editor: Yang Chai

Copyright © 2013 Yucui Wu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


We review the present status of single-walled carbon nanotubes (SWCNTs) for their production and purification technologies, as well as the fabrication and properties of single-walled carbon nanotube thin film transistors (SWCNT-TFTs). The most popular SWCNT growth method is chemical vapor deposition (CVD), including plasma-enhanced chemical vapor deposition (PECVD), floating catalyst chemical vapor deposition (FCCVD), and thermal CVD. Carbon nanotubes (CNTs) used to fabricate thin film transistors are sorted by electrical breakdown, density gradient ultracentrifugation, or gel-based separation. The technologies of applying CNT random networks to work as the channels of SWCNT-TFTs are also reviewed. Excellent work from global researchers has been benchmarked and analyzed. The unique properties of SWCNT-TFTs have been reviewed. Besides, the promising applications of SWCNT-TFTs have been explored. Finally, the key issues to be solved in future have been summarized.