Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2013, Article ID 635647, 6 pages
http://dx.doi.org/10.1155/2013/635647
Research Article

Fabrication of Metal Alloy-Deposited Flexible MWCNT Buckypaper for Thermoelectric Applications

1Department of Electrical Engineering, Tunghai University, 181 Taichung Harbor Road, Section 3, Taichung 40704, Taiwan
2Tunghai Green Energy Development and Management Institute, Tunghai University, 181 Taichung Harbor Road, Section 3, Taichung 40704, Taiwan
3Department of Industrial Engineering and Enterprise Information, Tunghai University, 181 Taichung Harbor Road, Section 3, Taichung 40704, Taiwan

Received 31 March 2013; Revised 10 September 2013; Accepted 27 September 2013

Academic Editor: Sulin Zhang

Copyright © 2013 Jih-Hsin Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. Liu, X. Yan, G. Chen, and Z. Ren, “Recent advances in thermoelectric nanocomposites,” Nano Energy, vol. 1, no. 1, pp. 42–56, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. M. S. Dresselhaus, G. Chen, M. Y. Tang et al., “New directions for low-dimensional thermoelectric materials,” Advanced Materials, vol. 19, no. 8, pp. 1043–1053, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. A. L. Prieto, M. Martín-González, J. Keyani, R. Gronsky, T. Sands, and A. M. Stacy, “The electrodeposition of high-density, ordered arrays of Bi1−xSbx nanowires,” Journal of the American Chemical Society, vol. 125, no. 9, pp. 2388–2389, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Mott, N. T. Mai, N. T. B. Thuy et al., “Bismuth, antimony and tellurium alloy nanoparticles with controllable shape and composition for efficient thermoelectric devices,” Physica Status Solidi (A), vol. 208, no. 1, pp. 52–58, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. H. J. Goldsmid, Semiconductors and Semimetals, vol. 69, chapter 1, Academic Press, New York, NY, USA, 2000.
  6. W. J. Xie, X. F. Tang, Y. G. Yan, Q. J. Zhang, and T. M. Tritt, “High thermoelectric performance BiSbTe alloy with unique low-dimensional structure,” Journal of Applied Physics, vol. 105, no. 11, Article ID 113713, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. Zhang, X. L. Wang, W. K. Yeoh, R. K. Zeng, and C. Zhang, “Electrical and thermoelectric properties of single-wall carbon nanotube doped Bi2Te3,” Applied Physics Letters, vol. 101, no. 3, Article ID 031909, 4 pages, 2012. View at Publisher · View at Google Scholar
  8. J. Liu, J. Sun, and L. Gao, “Flexible single-walled carbon nanotubes/polyaniline composite films and their enhanced thermoelectric properties,” Nanoscale, vol. 3, no. 9, pp. 3616–3619, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. W. Zhao, S. Fan, N. Xiao et al., “Flexible carbon nanotube papers with improved thermoelectric properties,” Energy and Environmental Science, vol. 5, no. 1, pp. 5364–5369, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Berhan, Y. B. Yi, A. M. Sastry, E. Munoz, M. Selvidge, and R. Baughman, “Mechanical properties of nanotube sheets: alterations in joint morphology and achievable moduli in manufacturable materials,” Journal of Applied Physics, vol. 95, no. 8, pp. 4335–4345, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, and T. Thio, “Electrical conductivity of individual carbon nanotubes,” Nature, vol. 382, no. 6586, pp. 54–56, 1996. View at Publisher · View at Google Scholar · View at Scopus
  12. I. Kunadian, R. Andrews, M. P. Mengüç, and D. Qian, “Thermoelectric power generation using doped MWCNTs,” Carbon, vol. 47, no. 3, pp. 589–601, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. C. H. Yu, L. Shi, Z. Yao, D. Li, and A. Majumdar, “Thermal conductance and thermopower of an individual single-wall carbon nanotube,” Nano Letters, vol. 5, no. 9, pp. 1842–1846, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. P. Kim, L. Shi, A. Majumdar, and P. L. McEuen, “Thermal transport measurements of individual multiwalled nanotubes,” Physical Review Letters, vol. 87, no. 21, Article ID 215502, 4 pages, 2001. View at Google Scholar · View at Scopus
  15. C. Meng, C. Liu, and S. Fan, “A promising approach to enhanced thermoelectric properties using carbon nanotube networks,” Advanced Materials, vol. 22, no. 4, pp. 535–539, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. M. T. Byrne and Y. K. Guin'Ko, “Recent advances in research on carbon nanotube—polymer composites,” Advanced Materials, vol. 22, no. 15, pp. 1672–1688, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. G. D. Zhan, J. D. Kuntz, A. K. Mukherjee, P. Zhu, and K. Koumoto, “Thermoelectric properties of carbon nanotube/ceramic nanocomposites,” Scripta Materialia, vol. 54, no. 1, pp. 77–82, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. Z. Wang, Z. Liang, B. Wang, C. Zhang, and L. Kramer, “Processing and property investigation of single-walled carbon nanotube (SWNT) buckypaper/epoxy resin matrix nanocomposites,” Composites A, vol. 35, no. 10, pp. 1225–1232, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. W. Chen, H. Y. Miao, M. Zhang, R. Liang, C. Zhang, and B. Wang, “Analysis of a laser post-process on a buckypaper field emitter for high and uniform electron emission,” Nanotechnology, vol. 20, no. 32, Article ID 325302, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. J. G. Park, J. Smithyman, C. Y. Lin et al., “Effects of surfactants and alignment on the physical properties of single-walled carbon nanotube buckypaper,” Journal of Applied Physics, vol. 106, no. 10, Article ID 104310, 6 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. A. B. Kaiser, G. Düsberg, and S. Roth, “Heterogeneous model for conduction in carbon nanotubes,” Physical Review B, vol. 57, no. 3, pp. 1418–1421, 1998. View at Google Scholar · View at Scopus
  22. J. C. Charlier, “Defects in carbon nanotubes,” Accounts of Chemical Research, vol. 35, no. 12, pp. 1063–1069, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. A. M. Díez-Pascual, J. Guan, B. Simard, and M. A. Gómez-Fatou, “Poly(phenylene sulphide) and poly(ether ether ketone) composites reinforced with single-walled carbon nanotube buckypaper: II—mechanical properties, electrical and thermal conductivity,” Composites A, vol. 43, no. 6, pp. 1007–1015, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. H. M. Kim, K. Kim, C. Y. Lee et al., “Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst,” Applied Physics Letters, vol. 84, no. 4, pp. 589–591, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Buldum and J. P. Lu, “Contact resistance between carbon nanotubes,” Physical Review B, vol. 63, no. 16, Article ID 161403(R), 4 pages, 2001. View at Publisher · View at Google Scholar
  26. C. Yu, Y. S. Kim, D. Kim, and J. C. Grunlan, “Thermoelectric behavior of segregated-network polymer nanocomposites,” Nano Letters, vol. 8, no. 12, pp. 4428–4432, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Hone, I. Ellwood, M. Muno et al., “Thermoelectric power of single-walled carbon nanotubes,” Physical Review Letters, vol. 80, no. 5, pp. 1042–1045, 1998. View at Google Scholar · View at Scopus
  28. Y. J. Choi, Y. Kim, S. G. Park et al., “Effect of the carbon nanotube type on the thermoelectric properties of CNT/Nafion nanocomposites,” Organic Electronics, vol. 12, no. 12, pp. 2120–2125, 2011. View at Publisher · View at Google Scholar · View at Scopus