Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2013, Article ID 636239, 8 pages
http://dx.doi.org/10.1155/2013/636239
Research Article

The Effect of Bilayer Graphene Nanoribbon Geometry on Schottky-Barrier Diode Performance

1Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Malaysia
2Nanotechnology Research Center Nanoelectronic Group, Physics Department, Urmia University, Urmia 57147, Iran
3Department of Electrical Engineering, Islamic Azad University, Yasooj Branch, Yasooj 63614, Iran
4Centre for Artificial Intelligence and Robotics (CAIRO), UTM, 81310 Skudai, Johor Bahru, Malaysia
5Department of Electrical, Computer and Biomedical Engineering, Islamic Azad University, Qazvin Branch, Qazvin 34185-1416, Iran

Received 21 August 2013; Revised 11 October 2013; Accepted 17 October 2013

Academic Editor: Munawar A. Riyadi

Copyright © 2013 Meisam Rahmani et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov et al., “Electric field in atomically thin carbon films,” Science, vol. 306, no. 5696, pp. 666–669, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Kargar and D. L. Wang, “Analytical modeling of graphene nanoribbon Schottky diodes,” in Carbon Nanotubes, Graphene and Associated Devices III, vol. 7761 of Proceedings of the SPIE, San Diego, Calif, USA, August 2010. View at Publisher · View at Google Scholar
  3. K. Alam, “Transport and performance of a zero-Schottky barrier and doped contacts graphene nanoribbon transistors,” Semiconductor Science and Technology, vol. 24, no. 1, Article ID 015007, 2009. View at Publisher · View at Google Scholar
  4. M. H. Ghadiry, M. Nadi, M. Rahmani, M. T. Ahmadi, and A. B. A. Manaf, “Modelling and simulation of saturation region in double gate graphene nanoribbon transistors,” Semiconductors, vol. 46, no. 1, pp. 126–129, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. M. T. Ahmadi, Z. Johari, N. A. Amin, A. H. Fallahpour, and R. Ismail, “Graphene nanoribbon conductance model in parabolic band structure,” Journal of Nanomaterials, vol. 2010, Article ID 753738, 4 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. M. T. Ahmadi, M. Rahmani, M. H. Ghadiry, and R. Ismail, “Monolayer graphene nanoribbon homojunction characteristics,” Science of Advanced Materials, vol. 4, no. 7, pp. 753–756, 2012. View at Google Scholar
  7. Y. Ouyang, Y. Yoon, and J. Guo, “Scaling behaviors of graphene nanoribbon FETs: a three-dimensional quantum simulation study,” IEEE Transactions on Electron Devices, vol. 54, no. 9, pp. 2223–2231, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Yoon, G. Fiori, S. Hong, G. Iannaccone, and J. Guo, “Performance comparison of graphene nanoribbon FETs with Schottky contacts and doped reservoirs,” IEEE Transactions on Electron Devices, vol. 55, no. 9, pp. 2314–2323, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. Q. Zhang, T. Fang, H. Xing, A. Seabaugh, and D. Jena, “Graphene nanoribbon tunnel transistors,” IEEE Electron Device Letters, vol. 29, no. 12, pp. 1344–1346, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Naeemi and J. D. Meindl, “Conductance modeling for graphene nanoribbon (GNR) interconnects,” IEEE Electron Device Letters, vol. 28, no. 5, pp. 428–431, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. Q. Liang and J. Dong, “Superconducting switch made of graphene-nanoribbon junctions,” Nanotechnology, vol. 19, no. 35, Article ID 355706, 2008. View at Publisher · View at Google Scholar
  12. D. Jena, T. Fang, Q. Zhang, and H. Xing, “Zener tunneling in semiconducting nanotube and graphene nanoribbon p-n junctions,” Applied Physics Letters, vol. 93, no. 11, Article ID 112106, 3 pages, 2008. View at Publisher · View at Google Scholar
  13. D. A. Neamen, Semiconductor Physics and Devices, University of New Mexico, Albuquerque, NM, USA, 3rd edition, 2003.
  14. M. Rahmani, M. T. Ahmadi, R. Ismail, and M. H. Ghadiry, “Performance of bilayer graphene nanoribbon Schottky diode in comparison with conventional diodes,” Journal of Computational and Theoretical Nanoscience, vol. 10, no. 2, pp. 323–327, 2013. View at Google Scholar
  15. C.-C. Chen, M. Aykol, C.-C. Chang, A. F. J. Levi, and S. B. Cronin, “Graphene-silicon Schottky diodes,” Nano Letters, vol. 11, no. 5, pp. 1863–1867, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Sankaran and K. O. Kenneth, “Schottky barrier diodes for millimeter wave detection in a foundry CMOS process,” IEEE Electron Device Letters, vol. 26, no. 7, pp. 492–494, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Kargar and C. Lee, “Graphene nanoribbon schottky diodes using asymmetric contacts,” in Proceedings of the 9th IEEE Conference on Nanotechnology, pp. 243–245, Genoa, Italy, July 2009.
  18. D. Jimenez, “A current-voltage model for Schottky-barrier graphene-based transistors,” Nanotechnology, vol. 19, no. 34, Article ID 345204, 2008. View at Publisher · View at Google Scholar
  19. S. M. Mousavi, M. T. Ahmadi, H. Sadeghi et al., “Bilayer graphene nanoribbon carrier statistic in degenerate and non degenerate limit,” Journal of Computational and Theoretical Nanoscience, vol. 8, no. 10, pp. 2029–2032, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Latil and L. Henrard, “Charge carriers in few-layer graphene films,” Physical Review Letters, vol. 97, no. 3, Article ID 036803, 4 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Koshino, “Electron delocalization in bilayer graphene induced by an electric field,” Physical Review B, vol. 78, no. 15, Article ID 155411, 5 pages, 2008. View at Publisher · View at Google Scholar
  22. M. Koshino, “Electronic transport in bilayer graphene,” New Journal of Physics, vol. 11, no. 9, Article ID 095010, 2009. View at Publisher · View at Google Scholar
  23. M. Rahmani, R. Ismail, M. T. Ahmadi, and M. H. Ghadiry, “Quantum confinement effect on trilayer graphene nanoribbon carrier concentration,” Journal of Experimental Nanoscience, 2013. View at Publisher · View at Google Scholar
  24. E. V. Castro, K. S. Novoselov, S. V. Morozov et al., “Electronic properties of a biased graphene bilayer,” Journal of Physics Condensed Matter, vol. 22, no. 17, Article ID 175503, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. T. Stauber, N. M. R. Peres, F. Guinea, and A. H. C. Neto, “Fermi liquid theory of a Fermi ring,” Physical Review B, vol. 75, no. 11, Article ID 115425, 10 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. D. S. Novikov, “Numbers of donors and acceptors from transport measurements in graphene,” Applied Physics Letters, vol. 91, no. 10, Article ID 102102, 2007. View at Publisher · View at Google Scholar
  27. Z. Q. Li, E. A. Henriksen, Z. Jiang et al., “Band structure asymmetry of bilayer graphene revealed by infrared spectroscopy,” Physical Review Letters, vol. 102, no. 3, Article ID 037403, 4 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. E. V. Castro, N. M. R. Peres, J. M. B. L. Dos Santos, F. Guinea, and A. H. C. Neto, “Bilayer graphene: gap tunability and edge properties,” Journal of Physics: Conference Series, vol. 129, no. 1, Article ID 012002, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. F. Guinea, A. H. C. Neto, and N. M. R. Peres, “Interaction effects in single layer and multi-layer graphene,” European Physical Journal, vol. 148, no. 1, pp. 117–125, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. H. Sadeghi, S. M. Mousavi, M. Rahmani, M. T. Ahmadi, and R. Ismail, “Bilayer graphene nanoribbon transport model,” in Advanced Nanoelectronics, chapter 7, Taylor & Francis, New York, NY, USA, 2012. View at Google Scholar
  31. S. Datta, Quantum Transport: Atom to Transistor, Cambridge University Press, New York, NY, USA, 2005.
  32. M. Rahmani, M. T. Ahmadi, H. Karimi, M. Saeidmanesh, E. Akbari, and R. Ismail, “Analytical modeling of trilayer graphene nanoribbon Schottky-barrier FET for high-speed switching applications,” Nanoscale Research Letters, vol. 8, no. 1, article 55, 2013. View at Publisher · View at Google Scholar
  33. H. Zeng, J. Zhao, J. W. Wei, and H. F. Hu, “Effect of N doping and Stone-Wales defects on the electronic properties of graphene nanoribbons,” The European Physical Journal B, vol. 79, no. 3, pp. 335–340, 2011. View at Publisher · View at Google Scholar
  34. J. Kotakoski, A. V. Krasheninnikov, U. Kaiser, and J. C. Meyer, “From point defects in graphene to two-dimensional amorphous carbon,” Physical Review Letters, vol. 106, no. 10, Article ID 105505, 4 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Reviews of Modern Physics, vol. 81, no. 1, pp. 109–162, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. L. Chen, H. Hu, Y. Ouyang, H. Z. Pan, Y. Y. Sun, and F. Liu, “Atomic chemisorption on graphene with Stone-Thrower-Wales defects,” Carbon, vol. 49, no. 10, pp. 3356–3361, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. J. Ma, D. Alfè, A. Michaelides, and E. Wang, “Stone-Wales defects in graphene and other planar sp2-bonded materials,” Physical Review B, vol. 80, no. 3, Article ID 033407, 4 pages, 2009. View at Publisher · View at Google Scholar
  38. Y. J. Sun, F. Ma, D. Y. Ma, K. W. Xu, and P. K. Chu, “Stress-induced annihilation of Stone-Wales defects in graphene nanoribbons,” Journal of Physics D, vol. 45, no. 30, Article ID 305308, 2012. View at Publisher · View at Google Scholar
  39. M. Rahmani, R. Ismail, M. T. Ahmadi, M. J. Kiani, and K. Rahmani, “Carrier velocity in high-field transport of trilayer graphene nanoribbon field effect transistor,” Science of Advanced Materials. In press.
  40. M. Rahmani, M. T. Ahmadi, H. F. A. Karimi, M. J. kiani, E. Akbari, and R. Ismail, “Analytical modeling of monolayer graphene-based NO2 sensor,” Sensor Letters, vol. 11, no. 2, pp. 270–275, 2013. View at Publisher · View at Google Scholar