Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2013 (2013), Article ID 679758, 9 pages
http://dx.doi.org/10.1155/2013/679758
Research Article

Improvement of Lifetime Using Transition Metal-Incorporated SAPO-34 Catalysts in Conversion of Dimethyl Ether to Light Olefins

1Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 305-764, Republic of Korea
2Division of Materials Science, Korea Basic Science Institute, 52 Eoeun-dong, Yuseong-gu, Daejeon 305-333, Republic of Korea
3Hydrogen Energy Research Group, Korea Institute of Energy Research, 71-2 Jang-dong, Yuseong-gu, Daejeon 305-343, Republic of Korea

Received 13 August 2013; Accepted 10 September 2013

Academic Editor: Yun Suk Huh

Copyright © 2013 Hyo-Sub Kim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. T. Wilson, B. M. Lok, C. A. Messina, T. R. Cannan, and E. M. Flanigen, “Aluminophosphate molecular sieves: a new class of microporous crystalline inorganic solids,” Journal of the American Chemical Society, vol. 104, no. 4, pp. 1146–1147, 1982. View at Google Scholar · View at Scopus
  2. S. Wilson and P. Barger, “The characteristics of SAPO-34 which influence the conversion of methanol to light olefins,” Microporous and Mesoporous Materials, vol. 29, no. 1-2, pp. 117–126, 1999. View at Google Scholar · View at Scopus
  3. S. Hotevar and J. Levec, “Acidity and catalytic activity of McAPSO-34 (Me = Co, Mn, Cr), SAPO-34, and H-ZSM-5 molecular sieves in methanol dehydration,” Journal of Catalysis, vol. 135, no. 2, pp. 518–532, 1992. View at Google Scholar · View at Scopus
  4. D. B. Akolekar, “Acidity and catalytic properties of AIPO4-11, SAPO-11, MAPO-11, NiAPO-11, MnAPO-11 and MnAPSO-11 molecular sieves,” Journal of Molecular Catalysis A, vol. 104, no. 1, pp. 95–102, 1995. View at Google Scholar · View at Scopus
  5. J. W. Park and G. Seo, “IR study on methanol-to-olefin reaction over zeolites with different pore structures and acidities,” Applied Catalysis A, vol. 356, no. 2, pp. 180–188, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Sastre, D. W. Lewis, and C. R. A. Catlow, “Modeling of silicon substitution in SAPO-5 and SAPO-34 molecular sieves,” Journal of Physical Chemistry B, vol. 101, no. 27, pp. 5249–5262, 1997. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Coluccia, L. Marchese, and G. Martra, “Characterisation of microporous and mesoporous materials by the adsorption of molecular probes: FTIR and UV-Vis studies,” Microporous and Mesoporous Materials, vol. 30, no. 1, pp. 43–56, 1999. View at Google Scholar · View at Scopus
  8. B. M. Lok, C. A. Messina, R. L. Patton, R. T. Gajek, T. R. Cannan, and E. M. Flanigen, “Silicoaluminophosphate molecular sieves: another new class of microporous crystalline inorganic solids,” Journal of the American Chemical Society, vol. 106, no. 20, pp. 6092–6093, 1984. View at Google Scholar · View at Scopus
  9. M. J. van Niekerk, J. C. Q. Fletcher, and C. T. O'Connor, “Effect of catalyst modification on the conversion of methanol to light olefins over SAPO-34,” Applied Catalysis A, vol. 138, no. 1, pp. 135–145, 1996. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Chen, H. P. Rebo, A. Grønvold, K. Moljord, and A. Holmen, “Methanol conversion to light olefins over SAPO-34: kinetic modeling of coke formation,” Microporous and Mesoporous Materials, vol. 35-36, pp. 121–135, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. X. Wu and R. G. Anthony, “Effect of feed composition on methanol conversion to light olefins over SAPO-34,” Applied Catalysis A, vol. 218, no. 1-2, pp. 241–250, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Seo and B. G. Min, “Mechanism of methanol conversion over zeolite and molecular sieve catalysts,” Korean Chemical Engineering Research, vol. 44, no. 4, pp. 329–339, 2006. View at Google Scholar
  13. G. Liu, P. Tian, J. Li, D. Zhang, F. Zhou, and Z. Liu, “Synthesis, characterization and catalytic properties of SAPO-34 synthesized using diethylamine as a template,” Microporous and Mesoporous Materials, vol. 111, no. 1–3, pp. 143–149, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Y. Lee, H.-J. Chae, S.-Y. Jeong, and G. Seo, “Effect of crystallite size of SAPO-34 catalysts on their induction period and deactivation in methanol-to-olefin reactions,” Applied Catalysis A, vol. 369, no. 1-2, pp. 60–66, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. H.-J. Chae, Y.-H. Song, K.-E. Jeong, C.-U. Kim, and S.-Y. Jeong, “Physicochemical characteristics of ZSM-5/SAPO-34 composite catalyst for MTO reaction,” Journal of Physics and Chemistry of Solids, vol. 71, no. 4, pp. 600–603, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. Y.-K. Park, K.-C. Park, and S.-K. Ihm, “Hydrocarbon synthesis through CO2 hydrogenation over CuZnOZrO2/zeolite hybrid catalysts,” Catalysis Today, vol. 44, no. 1–4, pp. 165–173, 1998. View at Google Scholar · View at Scopus
  17. P. Wang, A. Lv, J. Hu, J. Xu, and G. Lu, “The synthesis of SAPO-34 with mixed template and its catalytic performance for methanol to olefins reaction,” Microporous and Mesoporous Materials, vol. 152, pp. 178–184, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Álvaro-Muñoz, C. Márquez-Álvarez, and E. Sastre, “Use of different templates on SAPO- synthesis: effect on the acidity and catalytic activity in the MTO reaction,” Catalysis Today, vol. 179, no. 1, pp. 27–34, 2012. View at Google Scholar
  19. S.-M. Kim, Y.-J. Lee, J. W. Bae, H. S. Potdar, and K.-W. Jun, “Synthesis and characterization of a highly active alumina catalyst for methanol dehydration to dimethyl ether,” Applied Catalysis A, vol. 348, no. 1, pp. 113–120, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Kim, H.-J. Chae, T.-W. Kim, K.-E. Jeong, C.-U. Kim, and S.-Y. Jeong, “Attrition resistance and catalytic performance of spray-dried SAPO-34 catalyst for MTO process: effect of catalyst phase and acidic solution,” Journal of Industrial and Engineering Chemistry, vol. 17, no. 3, pp. 621–627, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. S. G. Lee, B. K. Yoo, H. S. Je, T. G. Ryu, C. S. Park, and Y. H. Kim, “The study on DME, (dimethyl ether) conversion over the supported SAPO-34 catalyst,” Transactions of the Korean Hydrogen and New Energy Society, vol. 22, no. 2, pp. 232–239, 2011. View at Google Scholar
  22. S. G. Lee, H. S. Kim, Y. H. Kim, E. J. Kang, D. H. Lee, and C. S. Park, “Dimethyl ether conversion to light olefins over the SAPO-34/ZrO2 composite catalysts with high lifetime,” Journal of Industrial and Engineerinng Chemistry, 2013. View at Publisher · View at Google Scholar
  23. B. M. Weckhuysen, R. R. Rao, J. A. Martens, and R. A. Schoonheydt, “Transition metal ions in microporous crystalline aluminophosphates: isomorphous substitution,” European Journal of Inorganic Chemistry, vol. 1999, no. 4, pp. 565–577, 1999. View at Google Scholar · View at Scopus
  24. M. Kang, “Synthesis and catalytic performance on methanol conversion of NiAPSO-34 crystals (II): catalytic performance under various reaction conditions,” Journal of Molecular Catalysis A, vol. 150, no. 1-2, pp. 205–212, 1999. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Karthik, A. Vinu, A. K. Tripathi, N. M. Gupta, M. Palanichamy, and V. Murugesan, “Synthesis, characterization and catalytic performance of Mg and Co substituted mesoporous aluminophosphates,” Microporous and Mesoporous Materials, vol. 70, no. 1–3, pp. 15–25, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Wei, Y. He, D. Zhang et al., “Study of Mn incorporation into SAPO framework: synthesis, characterization and catalysis in chloromethane conversion to light olefins,” Microporous and Mesoporous Materials, vol. 90, no. 1–3, pp. 188–197, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. D. Zhang, Y. Wei, L. Xu et al., “MgAPSO-34 molecular sieves with various Mg stoichiometries: synthesis, characterization and catalytic behavior in the direct transformation of chloromethane into light olefins,” Microporous and Mesoporous Materials, vol. 116, no. 1–3, pp. 684–692, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. F. C. Sena, B. F. de Souza, N. C. de Almeida, J. S. Cardoso, and L. D. Fernandes, “Influence of framework composition over SAPO-34 and MeAPSO-34 acidity,” Applied Catalysis A, vol. 406, no. 1-2, pp. 59–62, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Ashtekar, A. M. Prakash, D. K. Chakrabarty, and S. V. V. Chilukuri, “Small-pore aluminium phosphate molecular sieves with chabazite structure: incorporation of magnesium in structures-34 and -44,” Journal of the Chemical Society, Faraday Transactions, vol. 92, no. 13, pp. 2481–2486, 1996. View at Google Scholar · View at Scopus
  30. D. R. Dubois, D. L. Obrzut, J. Liu et al., “Conversion of methanol to olefins over cobalt-, manganese- and nickel-incorporated SAPO-34 molecular sieves,” Fuel Processing Technology, vol. 83, no. 1–3, pp. 203–218, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Salmasi, S. Fatemi, and A. T. Najafabadi, “Improvement of light olefins selectivity and catalyst lifetime in MTO reaction; using Ni and Mg-modified SAPO-34 synthesized by combination of two templates,” Journal of Industrial and Engineering Chemistry, vol. 17, no. 4, pp. 755–761, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. Wei, D. Zhang, L. Xu et al., “Synthesis, characterization and catalytic performance of metal-incorporated SAPO-34 for chloromethane transformation to light olefins,” Catalysis Today, vol. 131, no. 1–4, pp. 262–269, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. Y.-H. Song, H.-J. Chae, K.-E. Jeong, C.-U. Kim, C.-H. Shin, and S.-Y. Jeong, “The effect of crystal size of SAPO-34 synthesized using various structure directing agents for MTO reaction,” Journal of the Korean Industrial and Engineering Chemistry, vol. 19, no. 5, pp. 559–567, 2008. View at Google Scholar · View at Scopus
  34. M. M. J. Treacy, J. B. Higgins, and R. Ballmoos, Collection of Simulated XRD Powder Patterns for Zeolites, Elsevier, New York, NY, USA, 1996.
  35. A. M. Prakash and S. Unnikrishnan, “Synthesis of SAPO-34: high silicon incorporation in the presence of morpholine as template,” Journal of the Chemical Society, Faraday Transactions, vol. 90, no. 15, pp. 2291–2296, 1994. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Ashtekar, S. V. V. Chilukuri, and D. K. Chakrabarty, “Small-pore molecular sieves SAPO-34 and SAPO-44 with chabazite structure: a study of silicon incorporation,” Journal of Physical Chemistry, vol. 98, no. 18, pp. 4878–4883, 1994. View at Google Scholar · View at Scopus
  37. Y. K. Park, S. W. Baek, and S. K. Ihm, “Effect of reaction conditions and catalytic properties on methanol conversion over SAPO-34,” Journal of Industrial and Engineering Chemistry, vol. 7, no. 3, pp. 167–172, 2001. View at Google Scholar
  38. J. F. Haw and D. M. Marcus, “Well-defined (supra)molecular structures in zeolite methanol-to-olefin catalysis,” Topics in Catalysis, vol. 34, no. 1–4, pp. 41–48, 2005. View at Publisher · View at Google Scholar · View at Scopus