Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2013, Article ID 713475, 6 pages
http://dx.doi.org/10.1155/2013/713475
Research Article

Electromagnetic Properties of Inner Double Walled Carbon Nanotubes Investigated by Nuclear Magnetic Resonance

1Design Nano Applications Division (DNA), Research & Development Center, Saudi Aramco, Dhahran 31311, Saudi Arabia
2nanoNMRI group, UMR5587, University of Montpellier II, 34095 Montpellier, France
3KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
4Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA19104, USA
5Department of Physics, Umeå University, 901 87 Umeå, Sweden

Received 18 July 2013; Accepted 30 September 2013

Academic Editor: Tianxi Liu

Copyright © 2013 M. Bouhrara et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Kwon and D. Tomanek, “Electronic and structural properties of multiwall carbon nanotubes,” Physical Review B, vol. 58, no. 24, pp. R16001–R16004, 1998. View at Publisher · View at Google Scholar
  2. P. H. Lambin, V. Meunier, and A. Rubio, “Electronic structure of polychiral carbon nanotubes,” Physical Review B, vol. 62, no. 8, pp. 5129–5135, 2000. View at Publisher · View at Google Scholar
  3. A. Hashimoto, K. Suenaga, K. Urita et al., “Atomic correlation between adjacent graphene layers in double-wall carbon nanotubes,” Physical Review Letters, vol. 94, no. 4, Article ID 045504, 4 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Miyamoto, S. Saito, and D. Tomanek, “Electronic interwall interactions and charge redistribution in multiwall nanotubes,” Physical Review B, vol. 65, no. 4, Article ID 041402, 4 pages, 2001. View at Publisher · View at Google Scholar
  5. S. Okada and A. Oshiyama, “Curvature-induced metallization of double-walled semiconducting zigzag carbon nanotubes,” Physical Review Letters, vol. 91, no. 21, Article ID 216801, 4 pages, 2003. View at Google Scholar · View at Scopus
  6. W. Song, M. Ni, J. Lu et al., “Electronic structures of semiconducting double-walled carbon nanotubes: important effect of interlay interaction,” Chemical Physics Letters, vol. 414, no. 4–6, pp. 429–433, 2005. View at Publisher · View at Google Scholar
  7. R. Saito, R. Matsuo, T. Kimura, G. Dresselhaus, and M. S. Dresselhaus, “Anomalous potential barrier of double-wall carbon nanotube,” Chemical Physics Letters, vol. 348, no. 3-4, pp. 187–193, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. F. Simon, C. Kramberger, R. Pfeiffer et al., “Isotope engineering of carbon anotube systems,” Physical Review Letters, vol. 95, no. 1, Article ID 017401, 4 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. P. M. Singer, P. Wzietek, H. Alloul, F. Simon, and H. Kuzmany, “NMR evidence for gapped spin excitations in metallic carbon nanotubes,” Physical Review Letters, vol. 95, no. 23, Article ID 236403, 4 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. M. A. L. Marques, M. d'Avezac, and F. Mauri, “Magnetic response and NMR spectra of carbon nanotubes from ab initio calculations,” Physical Review B, vol. 73, no. 12, Article ID 125433, 6 pages, 2006. View at Publisher · View at Google Scholar
  11. Y. Kim and D. E. Luzzi, “Purification of pulsed laser synthesized single wall carbon nanotubes by magnetic filtration,” The Journal of Physical Chemistry B, vol. 109, no. 35, pp. 16636–16643, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Kim, O. N. Torrens, J. M. Kikkawa, E. Abou-Hamad, C. Goze-Bac, and D. E. Luzzi, “High-purity diamagnetic single-wall carbon nanotube buckypaper,” Chemistry of Materials, vol. 19, no. 12, pp. 2982–2986, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Bax, N. M. Szeverenyi, and G. E. Maciel, “Pulsed polarization transfer for 13C NMR in solids,” Journal of Magnetic Resonance, vol. 50, no. 2, pp. 227–232, 1982. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Z. Hu, W. Wang, F. Liu et al., “Magic-angle-turning experiments for measuring chemical-shift-tensor principal values in powdered solids,” Journal of Magnetic Resonance A, vol. 113, no. 2, pp. 210–222, 1995. View at Publisher · View at Google Scholar · View at Scopus
  15. Z. Gan and R. R. Ernst, “An improved 2d magic-angle-turning pulse sequence for the measurement of chemical-shift anisotropy,” Journal of Magnetic Resonance A, vol. 123, no. 1, pp. 140–143, 1996. View at Google Scholar · View at Scopus
  16. S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley, and R. B. Weisman, “Structure-assigned optical spectra of single-walled carbon nanotubes,” Science, vol. 298, no. 5602, pp. 2361–2366, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. E. Abou-Hamad, Y. Kim, A. V. Talyzin et al., “Hydrogenation of C60 in peapods: physical chemistry in nano vessels,” The Journal of Physical Chemistry C, vol. 113, no. 20, pp. 8583–8587, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. E. Abou-Hamad, Y. Kim, T. Wågberg et al., “Molecular dynamics and phase transition in one-dimensional crystal of C60 encapsulated inside single wall carbon nanotubes,” ACS Nano, vol. 3, no. 12, pp. 3878–3883, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Kim, E. Abou-Hamad, A. Rubio et al., “Communications: nanomagnetic shielding: high-resolution NMR in carbon allotropes,” Journal of Chemical Physics, vol. 132, no. 2, Article ID 021102, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Sternfeld, M. Saunders, R. J. Cross, and M. Rabinovitz, “The inside story of fullerene anions: a 3He NMR aromaticity probe,” Angewandte Chemie, vol. 42, no. 27, pp. 3136–3139, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Chen and J. Dong, “Electronic properties of peapods: effects of fullerene rotation and different types of tube,” Journal of Physics, vol. 16, no. 8, article 1401, 2004. View at Publisher · View at Google Scholar
  22. K. Matsuda, Y. Maniwa, and H. Kataura, “Highly rotational C60 dynamics inside single-walled carbon nanotubes: NMR observations,” Physical Review B, vol. 77, no. 7, Article ID 075421, 6 pages, 2008. View at Publisher · View at Google Scholar
  23. C. Goze-Bac, S. Latil, P. Lauginie et al., “Magnetic interactions in carbon nanostructures,” Carbon, vol. 40, no. 10, pp. 1825–1842, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Latil, L. Henrard, C. Goze-Bac, P. Bernier, and A. Rubio, “13C NMR chemical shift of single-wall carbon nanotubes,” Physical Review Letters, vol. 86, no. 14, pp. 3160–3163, 2001. View at Publisher · View at Google Scholar
  25. F. López-Urías, J. A. Rodríguez-Manzo, E. Muñoz-Sandoval, M. Terrones, and H. Terrones, “Magnetic response in finite carbon graphene sheets and nanotubes,” Optical Materials, vol. 29, no. 1, pp. 110–115, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Wågberg, C. Goze-Bac, R. Röding et al., “13C NMR on intercalated 2D-polymerised C60 and modified peapods,” in Proceedings of the 17th International Winterschool/Euroconference on Electronic Properties of Novel Materials (IWEPNM '04), vol. 723 of AIP Conference Proceedings, p. 238, March 2004. View at Publisher · View at Google Scholar
  27. E. Abou-Hamad, M.-R. Babaa, M. Bouhrara et al., “Structural properties of carbon nanotubes derived from 13C NMR,” Physical Review B, vol. 84, no. 16, Article ID 165417, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. E. Zurek, C. J. Pickard, B. Walczak, and J. Autschbach, “Density functional study of the 13C NMR chemical shifts in small-to-medium-diameter infinite single-walled carbon nanotubes,” The Journal of Physical Chemistry A, vol. 110, no. 43, pp. 11995–12004, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. E. Zurek, C. J. Pickard, and J. Autschbach, “Density functional study of the 13C NMR chemical shifts in single-walled carbon nanotubes with Stone-Wales defects,” The Journal of Physical Chemistry C, vol. 112, no. 31, pp. 11744–11750, 2008. View at Publisher · View at Google Scholar
  30. E. Zurek, C. J. Pickard, and J. Autschbach, “A density functional study of the 13C NMR chemical shifts in fluorinated single-walled carbon nanotubes,” The Journal of Physical Chemistry A, vol. 113, no. 16, pp. 4117–4124, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. E. Zurek, C. J. Pickard, and J. Autschbach, “Determining the diameter of functionalized single-walled carbon nanotubes with 13C NMR: a theoretical study,” The Journal of Physical Chemistry C, vol. 112, no. 25, pp. 9267–9271, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. D. Sebastiani and K. N. Kudin, “Electronic response properties of carbon nanotubes in magnetic fields,” ACS Nano, vol. 2, no. 4, pp. 661–668, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. O. V. Yazye and L. Helm, “Isotropic Knight shift of metallic carbon nanotubes,” Physical Review B, vol. 72, no. 24, Article ID 245416, 5 pages, 2005. View at Publisher · View at Google Scholar
  34. Y. Ihara, P. Wzietek, H. Alloul, M. H. Rummeli, Th. Pichler, and F. Simon, “Incidence of the Tomonaga-Luttinger liquid state on the NMR spin lattice relaxation in Carbon Nanotubes,” Europhysics Letters, vol. 90, article 17004, 2010. View at Google Scholar
  35. B. Dóra, M. Gulácsi, F. Simon, and H. Kuzmany, “Spin gap and luttinger liquid description of the NMR relaxation in carbon nanotubes,” Physical Review Letters, vol. 99, no. 16, Article ID 166402, 4 pages, 2007. View at Publisher · View at Google Scholar
  36. E. Abou-Hamad, C. Goze-Bac, F. Nitze et al., “Electronic properties of Cs-intercalated single-walled carbon nanotubes derived from nuclear magnetic resonance,” New Journal of Physics, vol. 13, Article ID 053045, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Bouhrara, Y. Saih, T. Wågberg, C. Goze-Bac, and E. Abou-Hamad, “High-resolution 13C nuclear magnetic resonance evidence of phase transition of Rb,Cs-intercalated single-walled nanotubes,” Journal of Applied Physics, vol. 110, no. 5, Article ID 054306, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. X.-P. Tang, A. Kleinhammes, H. Shimoda et al., “Electronic structures of single-walled carbon nanotubes determined by NMR,” Science, vol. 288, no. 5465, pp. 492–494, 2000. View at Publisher · View at Google Scholar · View at Scopus
  39. J. W. Mintmire and C. T. White, “First-principles band structures of armchair nanotubes,” Applied Physics A, vol. 67, no. 1, pp. 65–69, 1998. View at Google Scholar · View at Scopus