Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2013 (2013), Article ID 762381, 9 pages
http://dx.doi.org/10.1155/2013/762381
Research Article

Preparation and In Vitro and In Vivo Performance of Magnesium Ion Substituted Biphasic Calcium Phosphate Spherical Microscaffolds as Human Adipose Tissue-Derived Mesenchymal Stem Cell Microcarriers

1School of Materials Science and Engineering, Pusan National University, Busan 609-735, Republic of Korea
2Korea Institutes of Industrial Technology, Busan 618-230, Republic of Korea
3Department of Physiology, School of Medicine, Pusan National University, Yangsan 626-770, Republic of Korea
4School of Nano and Advanced Materials, Gyeongsang National University, Jinju 660-701, Republic of Korea
5Department of Advanced Materials Engineering, Chosun University, Gwangju 501-759, Republic of Korea

Received 17 April 2013; Accepted 16 May 2013

Academic Editor: Eng San Thian

Copyright © 2013 Dong-Hyun Kim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Daculsi, “Biphasic calcium phosphate concept applied to artificial bone, implant coating and injectable bone substitute,” Biomaterials, vol. 19, no. 16, pp. 1473–1478, 1998. View at Publisher · View at Google Scholar · View at Scopus
  2. B. H. Fellah, O. Gauthier, P. Weiss, D. Chappard, and P. Layrolle, “Osteogenicity of biphasic calcium phosphate ceramics and bone autograft in a goat model,” Biomaterials, vol. 29, no. 9, pp. 1177–1188, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Yuan, C. A. van Blitterswijk, K. de Groot, and J. D. de Bruijn, “Cross-species comparison of ectopic bone formation in biphasic calcium phosphate (BCP) and hydroxyapatite (HA) scaffolds,” Tissue Engineering, vol. 12, no. 6, pp. 1607–1615, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. M. P. Ginebra, M. Espanol, E. B. Montufar, R. A. Perez, and G. Mestres, “New processing approaches in calcium phosphate cements and their applications in regenerative medicine,” Acta Biomaterialia, vol. 6, no. 8, pp. 2863–2873, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. F. Tamimi, J. Torres, C. Kathan et al., “Bone regeneration in rabbit calvaria with novel monetite granules,” Journal of Biomedical Materials Research Part A, vol. 87, no. 4, pp. 980–985, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. W. Paul, J. Nesamony, and C. P. Sharma, “Delivery of insulin from hydroxyapatite ceramic microspheres: preliminary in vivo studies,” Journal of Biomedical Materials Research, vol. 61, no. 4, pp. 660–662, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Labbaf, O. Tsigkou, K. H. Müller, M. M. Stevens, A. E. Porter, and J. R. Jones, “Spherical bioactive glass particles and their interaction with human mesenchymal stem cells in vitro,” Biomaterials, vol. 32, no. 4, pp. 1010–1018, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Gonda, K. Ioku, Y. Shibata et al., “Stimulatory effect of hydrothermally synthesized biodegradable hydroxyapatite granules on osteogenesis and direct association with osteoclasts,” Biomaterials, vol. 30, no. 26, pp. 4390–4400, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. D. J. Misiek, J. N. Kent, and R. F. Carr, “Soft tissue responses to hydroxylapatite particles of different shapes,” Journal of Oral and Maxillofacial Surgery, vol. 42, no. 3, pp. 150–160, 1984. View at Google Scholar · View at Scopus
  10. B. Chang, C. Lee, K. Hong et al., “Osteoconduction at porous hydroxyapatite with various pore configurations,” Biomaterials, vol. 21, no. 12, pp. 1291–1298, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. S. V. Dorozhkin, “Biphasic, triphasic and multiphasic calcium orthophosphates,” Acta Biomaterialia, vol. 8, no. 3, pp. 963–977, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. E. Boanini, M. Gazzano, and A. Bigi, “Ionic substitutions in calcium phosphates synthesized at low temperature,” Acta Biomaterialia, vol. 6, no. 6, pp. 1882–1894, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Kannan, S. I. Vieira, S. M. Olhero et al., “Synthesis, mechanical and biological characterization of ionic doped carbonated hydroxyapatite/β-tricalcium phosphate mixtures,” Acta Biomaterialia, vol. 7, no. 4, pp. 1835–1843, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Saldaña, S. Sánchez-Salcedo, I. Izquierdo-Barba et al., “Calcium phosphate-based particles influence osteogenic maturation of human mesenchymal stem cells,” Acta Biomaterialia, vol. 5, no. 4, pp. 1294–1305, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Bigi, G. Falini, E. Foresti, M. Gazzano, A. Ripamonti, and N. Roveri, “Rietveld structure refinements of calcium hydroxylapatite containing magnesium,” Acta Crystallographica Section B, vol. 52, no. 1, pp. 87–92, 1996. View at Google Scholar · View at Scopus
  16. A. Yasukawa, S. Ouchi, K. Kandori, and T. Ishikawa, “Preparation and characterization of magnesium-calcium hydroxyapatites,” Journal of Materials Chemistry, vol. 6, no. 8, pp. 1401–1405, 1996. View at Google Scholar · View at Scopus
  17. T. W. Kim, H. S. Lee, D. H. Kim et al., “In situ synthesis of magnesium-substituted biphasic calcium phosphate and in vitro biodegradation,” Materials Research Bulletin, vol. 47, no. 9, pp. 2506–2512, 2012. View at Publisher · View at Google Scholar
  18. J. H. Lee, J. W. Rhie, D. Y. Oh, and S. T. Ahn, “Osteogenic differentiation of human adipose tissue-derived stromal cells (hASCs) in a porous three-dimensional scaffold,” Biochemical and Biophysical Research Communications, vol. 370, no. 3, pp. 456–460, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. J. Kim, S. W. Bae, S. S. Yu, Y. C. Bae, and J. S. Jung, “miR-196a regulates proliferation and osteogenic differentiation in mesenchymal stem cells derived from human adipose tissue,” Journal of Bone and Mineral Research, vol. 24, no. 5, pp. 816–825, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. J. I. Huang, S. R. Beanes, M. Zhu, H. P. Lorenz, M. H. Hedrick, and P. Benhaim, “Rat extramedullary adipose tissue as a source of osteochondrogenic progenitor cells,” Plastic and Reconstructive Surgery, vol. 109, no. 3, pp. 1033–1041, 2002. View at Google Scholar · View at Scopus
  21. P. A. Zuk, M. Zhu, H. Mizuno et al., “Multilineage cells from human adipose tissue: implications for cell-based therapies,” Tissue Engineering, vol. 7, no. 2, pp. 211–228, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. P. A. Zuk, M. Zhu, P. Ashjian et al., “Human adipose tissue is a source of multipotent stem cells,” Molecular Biology of the Cell, vol. 13, no. 12, pp. 4279–4295, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Shi, X. Zhang, Y. Pi, J. Zhu, C. Zhou, and Y. Ao, “Nanopolymers delivery of the bone morphogenetic protein-4 plasmid to mesenchymal stem cells promotes articular cartilage repair in vitro and in vivo,” Journal of Nanomaterials, vol. 2012, Article ID 236953, 9 pages, 2012. View at Publisher · View at Google Scholar
  24. K. S. Moon, S. H. Yu, J. M. Bae, and S. Oh, “Biphasic osteogenic characteristics of human mesenchymal stem cells cultured on TiO2 nanotubes of different diameters,” Journal of Nanomaterials, vol. 2012, Article ID 252481, 8 pages, 2012. View at Publisher · View at Google Scholar
  25. G. Chen, W. Song, and N. Kawazoe, “Dependence of spreading and differentiation of mesenchymal stem cells on micropatterned surface area,” Journal of Nanomaterials, vol. 2011, Article ID 265251, 9 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Kannan, I. A. F. Lemos, J. H. G. Rocha, and J. M. F. Ferreira, “Synthesis and characterization of magnesium substituted biphasic mixtures of controlled hydroxyapatite/β-tricalcium phosphate ratios,” Journal of Solid State Chemistry, vol. 178, no. 10, pp. 3190–3196, 2005. View at Publisher · View at Google Scholar · View at Scopus