Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2013 (2013), Article ID 903191, 9 pages
http://dx.doi.org/10.1155/2013/903191
Research Article

Synthesis of Colloidal ZnO Nanoparticles and Deposit of Thin Films by Spin Coating Technique

1Centro de Investigaciones y de Estudios Avanzados del Instituto Politecnico Nacional, Programa de Nanociencias y Nanotecnología, Avenida Instituto Politécnico Nacional No. 2508, Col. San Pedro Zacatenco, C.P. 07360, Mexico
2Centro de Investigaciones y de Estudios Avanzados del Instituto Politecnico Nacional (CINVESTAV-IPN), Seccion de Electronica del Estado Solido, Avenida Instituto Politécnico Nacional No. 2508, Col. San Pedro Zacatenco, C.P. 07360, Mexico
3Centro de Investigaciones en Dispositivos Semiconductores, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria Avenida San Claudio y 14 Sur, 72570 Puebla, Mexico

Received 16 July 2013; Accepted 9 October 2013

Academic Editor: Yanbao Zhao

Copyright © 2013 Jose Alberto Alvarado et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. B. Djuriić, A. M. C. Ng, and X. Y. Chen, “ZnO nanostructures for optoelectronics: material properties and device applications,” Progress in Quantum Electronics, vol. 34, no. 4, pp. 191–259, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, “Recent progress in processing and properties of ZnO,” Progress in Materials Science, vol. 50, no. 3, pp. 293–340, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. G. C. Yi, C. Wang, and W. I. Park, “ZnO nanorods: synthesis, characterization and applications,” Semiconductor Science and Technology, vol. 20, no. 4, article S22, 2005. View at Publisher · View at Google Scholar
  4. S. Y. Lee, E. S. Shim, H. S. Kang, S. S. Pang, and J. S. Kang, “Fabrication of ZnO thin film diode using laser annealing,” Thin Solid Films, vol. 473, no. 1, pp. 31–34, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. J. Zeng, Z. Z. Ye, W. Z. Xu et al., “Realization of p-type ZnO films via monodoping of Li acceptor,” Journal of Crystal Growth, vol. 283, no. 1-2, pp. 180–184, 2005. View at Publisher · View at Google Scholar
  6. H. S. Kang, B. D. Ahn, J. H. Kim et al., “Structural, electrical, and optical properties of p-type ZnO thin films with Ag dopant,” Applied Physics Letters, vol. 88, no. 20, Article ID 202108, 2006. View at Publisher · View at Google Scholar
  7. B. Yao, D. Z. Shen, Z. Z. Zhang et al., “Effects of nitrogen doping and illumination on lattice constants and conductivity behavior of zinc oxide grown by magnetron sputtering,” Journal of Applied Physics, vol. 99, Article ID 123510, 2006. View at Google Scholar
  8. Y. R. Jang, K. Yoo, and S. M. Park, “Properties of ZnO thin films grown on Si (100) substrates by pulsed laser deposition,” Journal of Materials Science and Technology, vol. 26, no. 11, pp. 973–976, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Komarneni, M. Bruno, and E. Mariani, “Synthesis of ZnO with and without microwaves,” Materials Research Bulletin, vol. 35, no. 11, pp. 1843–1847, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. C. H. Lu and C. H. Yeh, “Influence of hydrothermal conditions on the morphology and particle size of zinc oxide powder,” Ceramics International, vol. 26, no. 4, pp. 351–257, 2000. View at Publisher · View at Google Scholar
  11. Z. Zhou, H. Deng, J. Yi, and S. Liu, “A new method for preparation of zinc oxide whiskers,” Materials Research Bulletin, vol. 34, no. 10-11, pp. 1563–1567, 1999. View at Publisher · View at Google Scholar
  12. C. H. Lu and C. H. Yeh, “Emulsion precipitation of submicron zinc oxide powder,” Materials Letters, vol. 33, no. 3-4, pp. 129–132, 1997. View at Publisher · View at Google Scholar
  13. U. Pal, J. G. Serrano, P. Santiago, G. Xiong, K. B. Ucer, and R. T. Williams, “Synthesis and optical properties of ZnO nanostructures with different morphologies,” Optical Materials, vol. 29, no. 1, pp. 65–69, 2006. View at Publisher · View at Google Scholar
  14. W. Bai, K. Yu, Q. Zhang et al., “Large-scale synthesis of zinc oxide rose-like structures and their optical properties,” Physica E, vol. 40, no. 4, pp. 822–827, 2008. View at Publisher · View at Google Scholar
  15. R. Wahab, S. G. Ansari, Y. S. Kim, M. Song, and H. Shin, “The role of pH variation on the growth of zinc oxide nanostructures,” Applied Surface Science, vol. 255, no. 9, pp. 4891–4896, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. A. P. A. Oliveira, J. Hochepied, F. Grillon, and M. Berger, “Controlled precipitation of zinc oxide particles at room temperature,” Chemistry of Materials, vol. 15, no. 16, pp. 3202–3207, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. Q. P. Zhong and P. Matijevic, “Preparation of uniform zinc oxide colloids by controlled double-jet precipitation,” Journal of Materials Chemistry, vol. 6, pp. 443–447, 1996. View at Publisher · View at Google Scholar
  18. E. A. Meulenkamp, “Synthesis and growth of ZnO nanoparticles,” The Journal of Physical Chemistry B, vol. 102, pp. 5566–5572, 1998. View at Publisher · View at Google Scholar
  19. S. Suwanboon, “Structural and optical properties of nanocrystalline ZnO powder from sol-gel method,” ScienceAsia, vol. 34, no. 1, pp. 31–34, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. N. Fujimura, T. Nishihara, S. Goto, J. Xu, and T. Ito, “Control of preferred orientation for ZnOx films: control of self-texture,” Journal of Crystal Growth, vol. 130, no. 1-2, pp. 269–279, 1993. View at Google Scholar · View at Scopus
  21. M. Sharma and R. M. Mehra, “Effect of thickness on structural, electrical, optical and magnetic properties of Co and Al doped ZnO films deposited by sol-gel route,” Applied Surface Science, vol. 255, pp. 2527–2532, 2008. View at Publisher · View at Google Scholar
  22. S. Nicolay, S. Fay, and C. Ballif, “Growth model of MOCVD polycrystalline ZnO,” Crystal Growth and Design, vol. 9, no. 11, pp. 4957–4962, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. M. W. Zhu, J. H. Xia, R. J. Hong et al., “Heat-activated structural evolution of sol-gel-derived ZnO thin films,” Journal of Crystal Growth, vol. 310, no. 4, pp. 816–823, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. P. T. Hsieh, Y. C. Chen, M. S. Lee, K. S. Kao, M. C. Kao, and M. P. Houng, “The effects of oxygen concentration on ultraviolet luminescence of ZnO films by sol-gel technology and annealing,” Journal of Sol-Gel Science and Technology, vol. 47, no. 1, pp. 1–6, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Ohyama, H. Kozuka, and T. Yoko, “Sol-gel preparation of ZnO films with extremely preferred orientation along (002) plane from zinc acetate solution,” Thin Solid Films, vol. 306, no. 1, pp. 78–85, 1997. View at Google Scholar · View at Scopus
  26. B. Z. Dong, G. J. Fang, J. F. Wang, W. J. Guan, and X. Z. Zhao, “Effect of thickness on structural, electrical, and optical properties of ZnO: Al films deposited by pulsed laser deposition,” Journal of Applied Physics, vol. 101, Article ID 033713, 2007. View at Publisher · View at Google Scholar
  27. J. Wang, Y. Qi, Z. Zhi, J. Guo, M. Li, and Y. Zhang, “A self-assembly mechanism for sol-gel derived ZnO thin films,” Smart Materials and Structures, vol. 16, no. 6, p. 2673, 2007. View at Publisher · View at Google Scholar
  28. J. C. Lee, K. H. Kang, S. K. Kim, K. H. Yoon, I. J. Park, and J. Song, “RF sputter deposition of the high-quality intrinsic and n-type ZnO window layers for Cu(In,Ga)Se2-based solar cell applications,” Solar Energy Materials and Solar Cells, vol. 64, no. 2, pp. 185–195, 2000. View at Publisher · View at Google Scholar