Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2013, Article ID 905389, 5 pages
http://dx.doi.org/10.1155/2013/905389
Research Article

Formation of Dense Pore Structure by Te Addition in Bi0.5Sb1.5Te3: An Approach to Minimize Lattice Thermal Conductivity

1Department of Energy Science, Sungkyunkwan University, Suwon, Gyeonggi 440-746, Republic of Korea
2Materials R&D Center, Samsung Advanced Institute of Technology, Samsung Electronics, Yongin, Gyeonggi 446-712, Republic of Korea
3Powder Technology Department, Powder and Ceramics Division, Korea Institute of Materials Science, Changwon, Gyeongnam 642-831, Republic of Korea
4School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education, Cheonan, Chungnam 330-708, Republic of Korea
5Centre for Integrated Nanostructure Physics, Institute of Basic Science (IBS), Daejeon 305-701, Republic of Korea

Received 14 June 2013; Accepted 20 September 2013

Academic Editor: Won-Seon Seo

Copyright © 2013 Syed Waqar Hasan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Poudel, Q. Hao, Y. Ma et al., “High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys,” Science, vol. 320, no. 5876, pp. 634–638, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. W. Xie, J. He, H. J. Kang et al., “Identifying the specific nanostructures responsible for the high thermoelectric performance of (Bi,Sb)2Te3 nanocomposites,” Nano Letters, vol. 10, no. 9, pp. 3283–3289, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. R. J. Mehta, Y. Zhang, C. Karthik et al., “A new class of doped nanobulk high-figure-of-merit thermoelectrics by scalable bottom-up assembly,” Nature Materials, vol. 11, no. 3, pp. 233–240, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. J. S. Son, M. K. Choi, M. Han et al., “N-type nanostructured thermoelectric materials prepared from chemically synthesized ultrathin Bi2Te3 nanoplates,” Nano Letters, vol. 12, no. 2, pp. 640–647, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Soni, Z. Yanyuan, Y. Ligen, M. K. K. Aik, M. S. Dresselhaus, and Q. Xiong, “Enhanced thermoelectric properties of solution grown Bi2Te3-xSex nanoplatelet composites,” Nano Letters, vol. 12, no. 3, pp. 1203–1209, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Min, J. W. Roh, H. Yang et al., “Surfactant-free scalable synthesis of Bi2Te3 and Bi2Se3 nanoflakes and enhanced thermoelectric properties of their nanocomposites,” Advanced Materials, vol. 25, no. 10, pp. 1425–1429, 2013. View at Publisher · View at Google Scholar
  7. M. Popov, S. Buga, P. Vysikaylo et al., “C60-doping of nanostructured Bi-Sb-Te thermoelectrics,” Physica Status Solidi A, vol. 208, no. 12, pp. 2783–2789, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Y. Kim, B. K. Yu, and T. S. Oh, “Thermoelectric characteristics of the p-type (Bi0.2Sb0.8)2Te3 nanocomposites processed with SbTe nanowire dispersion,” Electronic Material Letters, vol. 8, no. 3, pp. 269–273, 2012. View at Publisher · View at Google Scholar
  9. V. D. Blank, S. G. Buga, V. A. Kulbachinskii et al., “Thermoelectric properties of Bi0.5Sb1.5Te3/C60 nanocomposites,” Physical Review B, vol. 86, no. 7, Article ID 075426, 2012. View at Publisher · View at Google Scholar
  10. M. Cutler and N. F. Mott, “Observation of anderson localization in an electron gas,” Physical Review, vol. 181, no. 3, pp. 1336–1340, 1969. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Ohtaki and K. Araki, “Thermoelectric properties and thermopower enhancement of Al-doped ZnO with nanosized pore structure,” Journal of the Ceramic Society of Japan, vol. 119, no. 1395, pp. 813–816, 2011. View at Google Scholar · View at Scopus
  12. S. I. Kim, S. Hwang, J. W. Roh et al., “Experimental evidence of enhancement of thermoelectric properties in tellurium nanoparticle-embedded bismuth antimony telluride,” Journal of Materials Research, vol. 27, no. 19, pp. 2449–2456, 2012. View at Publisher · View at Google Scholar