Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2014, Article ID 257391, 8 pages
http://dx.doi.org/10.1155/2014/257391
Research Article

The Long-Term Fate and Toxicity of PEG-Modified Single-Walled Carbon Nanotube Isoliquiritigenin Delivery Vehicles in Rats

1Pharmacy School of Shihezi University, Shihezi 832002, China
2Key Laboratory of Xinjiang Phytomedicine Resources, Shihezi 832002, China
3The Ankang Hospital of Xinjiang P&C Corps, Shihezi 832002, China

Received 28 October 2013; Revised 11 December 2013; Accepted 12 December 2013; Published 16 March 2014

Academic Editor: Jinlong Jiang

Copyright © 2014 Bo Han et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Umemura, R. Kitaguchi, K. Inagaki, and H. Haraguchi, “Direct injection determination of theophylline and caffeine in blood serum by high-performance liquid chromatography using an ODS column coated with a zwitterionic bile acid derivative,” Analyst, vol. 123, no. 8, pp. 1767–1770, 1998. View at Publisher · View at Google Scholar · View at Scopus
  2. H.-X. Liu, W.-H. Lin, X.-L. Wang, and J.-S. Yang, “Flavonoids from preparation of traditional Chinese medicines named Sini-Tang,” Journal of Asian Natural Products Research, vol. 7, no. 2, pp. 139–143, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Tawata, K. Aida, T. Noguchi et al., “Anti-platelet action of isoliquiritigenin, an aldose reductase inhibitor in licorice,” European Journal of Pharmacology, vol. 212, no. 1, pp. 87–92, 1992. View at Google Scholar · View at Scopus
  4. C. Zhan and J. Yang, “Protective effects of isoliquiritigenin in transient middle cerebral artery occlusion-induced focal cerebral ischemia in rats,” Pharmacological Research, vol. 53, no. 3, pp. 303–309, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. J.-Y. Kim, S. J. Park, K.-J. Yun, Y.-W. Cho, H.-J. Park, and K.-T. Lee, “Isoliquiritigenin isolated from the roots of Glycyrrhiza uralensis inhibits LPS-induced iNOS and COX-2 expression via the attenuation of NF-κB in RAW 264.7 macrophages,” European Journal of Pharmacology, vol. 584, no. 1, pp. 175–184, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. D.-C. Kim, S.-Y. Choi, S.-H. Kim et al., “Isoliquiritigenin selectively inhibits H2 histamine receptor signaling,” Molecular Pharmacology, vol. 70, no. 2, pp. 493–500, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. Sato, J.-X. He, H. Nagai, T. Tani, and T. Akao, “Isoliquiritigenin, one of the antispasmodic principles of Glycyrrhiza ularensis roots, acts in the lower part of intestine,” Biological and Pharmaceutical Bulletin, vol. 30, no. 1, pp. 145–149, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Tamir, M. Eizenberg, D. Somjen, S. Izrael, and J. Vaya, “Estrogen-like activity of glabrene and other constituents isolated from licorice root,” Journal of Steroid Biochemistry and Molecular Biology, vol. 78, no. 3, pp. 291–298, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. B. Han, Q.-N. Li, S.-W. Wu, J.-G. Li, W. Chen, and W.-X. Li, “Selective adsorption of multi-walled carbon nanotubes with liquiritin and isoliquiritin,” Yao Xue Xue Bao, vol. 42, no. 11, pp. 1222–1226, 2007. View at Google Scholar · View at Scopus
  10. B. Han, W. Chen, W.-J. Jin, and S.-P. Liu, “Evaluation of AB-8 macroporous adsorption resin for adsorption of total flavones in liquorice,” Nan Fang Yi Ke Da Xue Xue Bao, vol. 27, no. 3, pp. 265–267, 2007. View at Google Scholar · View at Scopus
  11. B. Han, Q. -s. Zheng, W. Chen, X. Wang, Q. Wang, and L. Li, “A novel process for extraction of isoliquiritigenin from licorice (Glycyrrhiza glabra) roots by facile convert,” Chemistry of Nature Compounds, vol. 46, no. 4, pp. 523–527, 2010. View at Google Scholar
  12. D. Li, Z. Wang, H. Chen et al., “Isoliquiritigenin induces monocytic differentiation of HL-60 cells,” Free Radical Biology and Medicine, vol. 46, no. 6, pp. 731–736, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. B. Han, W. Chen, Q. Zheng et al., “Determination of isoliquiritigenin and its distribution in mice by synchronous fluorescence spectrometry,” Analytical Sciences, vol. 27, no. 11, pp. 1115–1119, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. S. A. Hodge, M. K. Bayazit, K. S. Coleman, and M. S. Shaffer, “Unweaving the rainbow: a review of the relationship between single-walled carbon nanotube molecular structures and their chemical reactivity,” Chemical Society Reviews, vol. 41, no. 12, pp. 4409–4429, 2012. View at Google Scholar
  15. H. Ali-Boucetta and K. Kostarelos, “Carbon nanotubes in medicine and biology: therapy and diagnostics,” Advanced Drug Delivery Reviews, vol. 65, no. 15, pp. 1897–1898, 2013. View at Google Scholar
  16. Z. Liu, S. Tabakman, K. Welsher, and H. Dai, “Carbon nanotubes in biology and medicine: In vitro and in vivo detection, imaging and drug delivery,” Nano Research, vol. 2, no. 2, pp. 85–120, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. C.-W. Lam, J. T. James, R. McCluskey, and R. L. Hunter, “Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intractracheal instillation,” Toxicological Sciences, vol. 77, no. 1, pp. 126–134, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. J. C. Carrero-Sánchez, A. L. Elías, R. Mancilla et al., “Biocompatibility and toxicological studies of carbon nanotubes doped with nitrogen,” Nano Letters, vol. 6, no. 8, pp. 1609–1616, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Donaldson and C. A. Poland, “Nanotoxicology: new insights into nanotubes,” Nature Nanotechnology, vol. 4, no. 11, pp. 708–710, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. S. M. Ryan, G. Mantovani, X. Wang, D. M. Haddleton, and D. J. Brayden, “Advances in PEGylation of important biotech molecules: delivery aspects,” Expert Opinion on Drug Delivery, vol. 5, no. 4, pp. 371–383, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. B. Zhao, H. Hu, A. Yu, D. Perea, and R. C. Haddon, “Synthesis and characterization of water soluble single-walled carbon nanotube graft copolymers,” Journal of the American Chemical Society, vol. 127, no. 22, pp. 8197–8203, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Sarafraz-Yazdi, A. Amiri, G. Rounaghi, and H. E. Hosseini, “A novel solid-phase microextraction using coated fiber based sol-gel technique using poly(ethylene glycol) grafted multi-walled carbon nanotubes for determination of benzene, toluene, ethylbenzene and o-xylene in water samples with gas chromatography-flam ionization detector,” Journal of Chromatography A, vol. 1218, no. 34, pp. 5757–5764, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. B. Han, S. Ma, H. A. Aisa, X. C. Wang, and W. Chen, “Characterization andbiocompatibility of pegylated single walled carbon nanotubes,” Chinese Journal of Hospital Pharmacy, vol. 32, no. 18, pp. 1415–1419, 2012. View at Google Scholar
  24. R. Zeineldin, M. Al-Haik, and L. G. Hudson, “Role of polyethylene glycol integrity in specific receptor targeting of carbon nanotubes to cancer cells,” Nano Letters, vol. 9, no. 2, pp. 751–757, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Singh, D. Pantarotto, L. Lacerda et al., “Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 9, pp. 3357–3362, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. L. Lacerda, A. Soundararajan, R. Singh et al., “Dynamic imaging of functionalized multi-walled carbon nanotube systemic circulation and urinary excretion,” Advanced Materials, vol. 20, no. 2, pp. 225–230, 2008. View at Publisher · View at Google Scholar · View at Scopus