Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2014, Article ID 345845, 12 pages
http://dx.doi.org/10.1155/2014/345845
Research Article

Hyaluronate Targeted Solid Lipid Nanoparticles of Etoposide: Optimization and In Vitro Characterization

1Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, P.O. Box 81745-359, Isfahan, Iran
2Department of Medicinal Chemistry, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, P.O. Box 81745-359, Isfahan, Iran

Received 13 October 2013; Revised 25 January 2014; Accepted 10 February 2014; Published 18 March 2014

Academic Editor: Renyun Zhang

Copyright © 2014 Jaleh Varshosaz et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The aim of the present study was preparation of hyaluronan (HA) targeted solid lipid nanoparticles (SLNs) of etoposide. SLNs were prepared by an emulsification-solvent evaporation method and physically coated with HA. Four variables, including the ratio of cetyl alcohol to cationic lipid, cationic lipid type (stearylamine (SA) or dodecylamine (DDA)), lipid to HA ratio, and organic to aqueous phase ratio, were studied in an irregular fraction factorial design. Four responses, including particle size, zeta potential, drug loading, and 24-hour release efficiency percent, were measured for each formulation and then the optimization was carried out. The percent of HA coated on the SLNs was calculated by CHN elemental analysis which was shown to be about 55.89%. The cationic lipid type and the ratio of cetyl alcohol to cationic lipid had the highest influence on particle size and zeta potential, respectively. The highest effects of the ratio of lipid to HA and the organic to aqueous phase ratio were on the drug loading efficiency of SLNs. The optimized formulation of SLNs was obtained by SA, the equal proportion of cetyl alcohol and cationic lipid, the ratio of 1.5 for lipid to HA, and 10% of organic phase to aqueous phase.