Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2014, Article ID 347858, 5 pages
http://dx.doi.org/10.1155/2014/347858
Research Article

Temperature Effects on a-IGZO Thin Film Transistors Using HfO2 Gate Dielectric Material

Department of Electronic Engineering, National United University, Miaoli 36003, Taiwan

Received 18 January 2014; Revised 16 June 2014; Accepted 20 June 2014; Published 6 July 2014

Academic Editor: Kaushal Kumar

Copyright © 2014 Yu-Hsien Lin and Jay-Chi Chou. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature, vol. 432, no. 7016, pp. 488–492, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, “Amorphous oxide channel TFTs,” Thin Solid Films, vol. 516, no. 7, pp. 1516–1522, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Kamiya, K. Nomura, and H. Hosono, “Origins of high mobility and low operation voltage of amorphous oxide TFTs: electronic structure, electron transport, defects and doping,” Journal of Display Technology, vol. 5, no. 7, pp. 273–288, 2009. View at Google Scholar
  4. A. Takagi, K. Nomura, H. Ohta et al., “Carrier transport and electronic structure in amorphous oxide semiconductor, a-InGaZnO4,” Thin Solid Films, vol. 486, no. 1-2, pp. 38–41, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. C. J. Chiu, Z. W. Pei, S. P. Chang, and S. J. Chang, “Influence of weight ratio of poly(4-vinylphenol) insulator on electronic properties of InGaZnO thin-film transistor,” Journal of Nanomaterials, vol. 2012, Article ID 698123, 7 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, and H. Hosono, “Amorphous oxide semiconductors for high-performance flexible thin-film transistors,” Japanese Journal of Applied Physics, vol. 45, no. 5, pp. 4303–4308, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Hosono, “Ionic amorphous oxide semiconductors: material design, carrier transport, and device application,” Journal of Non-Crystalline Solids, vol. 352, no. 9–20, pp. 851–858, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Iwasaki, N. Itagaki, T. Den et al., “Combinatorial approach to thin-film transistors using multicomponent semiconductor channels: an application to amorphous oxide semiconductors in In-Ga-Zn-O system,” Applied Physics Letters, vol. 90, no. 24, Article ID 242114, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Wang, S. W. Liu, X. W. Sun et al., “Highly transparent solution processed In-Ga-Zn oxide thin films and thin film transistors,” Journal of Sol-Gel Science and Technology, vol. 55, no. 3, pp. 322–327, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. B. H. Lee, L. Kang, R. Nieh, W. Qi, and J. C. Lee, “Thermal stability and electrical characteristics of ultrathin hafnium oxide gate dielectric reoxidized with rapid thermal annealing,” Applied Physics Letters, vol. 76, no. 14, pp. 1926–1928, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Kang, B. H. Lee, W.-J. Qi et al., “Electrical characteristics of highly reliable ultrathin hafnium oxide gate dielectric,” IEEE Electron Device Letters, vol. 21, no. 4, pp. 181–183, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. G. D. Wilk, R. M. Wallace, and J. M. Anthony, “Hafnium and zirconium silicates for advanced gate dielectrics,” Journal of Applied Physics, vol. 87, no. 1, pp. 484–492, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Kim, J. H. Jeong, H. J. Lee et al., “High mobility bottom gate InGaZnO thin film transistors with Si Ox etch stopper,” Applied Physics Letters, vol. 90, no. 21, Article ID 212114, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Hwang, J. H. Lee, C. H. Woo, J. Y. Lee, and H. K. Cho, “Effect of annealing temperature on the electrical performances of solution-processed InGaZnO thin film transistors,” Thin Solid Films, vol. 519, no. 15, pp. 5146–5149, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Park, J. K. Jeong, H. Chung, Y. Mo, and H. D. Kim, “Electronic transport properties of amorphous indium- gallium-zinc oxide indium-gallium-zinc oxide semiconductor upon exposure to water,” Applied Physics Letters, vol. 92, no. 7, Article ID 072104, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Kim, Y. W. Jeon, Y. Kim et al., “Impact of oxygen flow rate on the instability under positive bias stresses in DC-sputtered amorphous InGaZnO thin-film transistors,” IEEE Electron Device Letters, vol. 33, no. 1, pp. 62–64, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. E. Chong, Y. S. Chun, S. H. Kim, and S. Y. Lee, “Effect of oxygen on the threshold voltage of a-IGZO TFT,” Journal of Electrical Engineering and Technology, vol. 6, no. 4, pp. 539–542, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. C. G. Van de Walle, “Hydrogen as a cause of doping in zinc oxide,” Physical Review Letters, vol. 85, no. 5, pp. 1012–1015, 2000. View at Publisher · View at Google Scholar · View at Scopus