Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2014, Article ID 368071, 6 pages
http://dx.doi.org/10.1155/2014/368071
Research Article

Structural Evolution and Electrochemical Performance of Li2MnSiO4/C Nanocomposite as Cathode Material for Li-Ion Batteries

College of Materials Science and Engineering, Nanjing University of Technology, Nanjing 210009, China

Received 11 November 2013; Accepted 4 December 2013; Published 19 January 2014

Academic Editor: Xiangyu Zhao

Copyright © 2014 Min Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, “Phospho-olivines as positive-electrode materials for rechargeable lithium batteries,” Journal of the Electrochemical Society, vol. 144, no. 4, pp. 1188–1194, 1997. View at Google Scholar · View at Scopus
  2. A. Nytén, A. Abouimrane, M. Armand, T. Gustafsson, and J. O. Thomas, “Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material,” Electrochemistry Communications, vol. 7, no. 2, pp. 156–160, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. M. K. Devaraju, T. Tomai, A. Unemoto, and I. Honma, “Supercritical hydrothermal synthesis of rod like Li2FeSiO4 particles for cathode application in lithium ion batteries,” Electrochimica Acta, vol. 109, pp. 75–81, 2013. View at Google Scholar
  4. V. Aravindan, K. Karthikeyan, K. S. Kang, W. S. Yoon, W. S. Kim, and Y. S. Lee, “Influence of carbon towards improved lithium storage properties of Li2MnSiO4 cathodes,” Journal of Materials Chemistry, vol. 21, no. 8, pp. 2470–2475, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Kokalj, R. Dominko, G. Mali, A. Meden, M. Gaberscek, and J. Jamnik, “Beyond one-electron reaction in Li cathode materials: designing Li2MnxFe1-xSiO4,” Chemistry of Materials, vol. 19, no. 15, pp. 3633–3640, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. S. K. Liu, J. Xu, D. Z. Li, Y. Hu, X. Liu, and K. Xie, “High capacity Li2MnSiO4/C nanocomposite prepared by sol-gel method for lithium-ion batteries,” Journal of Power Sources, vol. 232, pp. 258–263, 2013. View at Google Scholar
  7. Y.-X. Li, Z.-L. Gong, and Y. Yang, “Synthesis and characterization of Li2MnSiO4/C nanocomposite cathode material for lithium ion batteries,” Journal of Power Sources, vol. 174, no. 2, pp. 528–532, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Bhaskar, M. Deepa, T. N. Rao, and U. V. Varadaraju, “In situ carbon coated Li2MnSiO4/C composites as cathodes for enhanced performance li-ion batteries,” Journal of the Electrochemical Society, vol. 159, no. 12, pp. A1954–A1960, 2012. View at Google Scholar
  9. M. K. Devaraju, T. Tomai, A. Unemoto, and I. Honma, “Novel processing of lithium manganese silicate nanomaterials for Li-ion battery applications,” RSC Advance, vol. 3, pp. 608–615, 2013. View at Google Scholar
  10. T. Muraliganth, K. R. Stroukoff, and A. Manthiram, “Microwave-solvothermal synthesis of nanostructured Li2MSiO4/C (M = Mn and Fe) cathodes for lithium-ion batteries,” Chemistry of Materials, vol. 22, no. 20, pp. 5754–5761, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Zhao, C. X. Wu, J. X. Li, and L. H. Guan, “Long cycling life of Li2MnSiO4 lithium battery cathodes under double protection from carbon coating and grapheme network,” Journal of Materials Chemistry A, vol. 1, no. 12, pp. 3856–3859, 2013. View at Google Scholar
  12. D. Sun, H. Y. Wang, P. Ding et al., “In-situ synthesis of carbon coated Li2MnSiO4 nanoparticles with high rate performance,” Journal of Power Sources, vol. 242, pp. 865–871, 2013. View at Google Scholar
  13. R. Dominko, M. Bele, A. Kokalj, M. Gaberscek, and J. Jamnik, “Li2MnSiO4 as a potential Li-battery cathode material,” Journal of Power Sources, vol. 174, no. 2, pp. 457–461, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Karthikeyan, V. Aravindan, S. B. Lee et al., “Electrochemical performance of carbon-coated lithium manganese silicate for asymmetric hybrid supercapacitors,” Journal of Power Sources, vol. 195, no. 11, pp. 3761–3764, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Kojima, T. Kojima, M. Tabuchi, and T. Sakai, “Synthesis of Li2MnSiO4 cathode material using molten carbonate flux method with high capacity and initial efficiency,” Journal of the Electrochemical Society, vol. 159, no. 5, pp. A532–A537, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. F. Wang, J. Chen, C. Wang, and B. L. Yi, “Fast sol-gel synthesis of mesoporous Li2MnSiO4/C nanocomposite with improved electrochemical performance for lithium-ion batteries,” Journal of Electroanalytical Chemistry, vol. 688, pp. 123–129, 2013. View at Google Scholar
  17. D. Rangappa, K. D. Murukanahally, T. Tomai, A. Unemoto, and I. Honma, “Ultrathin nanosheets of Li2MSiO4 (M = Fe, Mn) as high-capacity Li-ion battery electrode,” Nano Letters, vol. 12, no. 3, pp. 1146–1151, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. D. M. Kempaiah, D. Rangappa, and I. Honma, “Controlled synthesis of nanocrystalline Li2MnSiO4 particles for high capacity cathode application in lithium-ion batteries,” Chemical Communications, vol. 48, no. 21, pp. 2698–2700, 2012. View at Publisher · View at Google Scholar · View at Scopus