Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2014, Article ID 378981, 6 pages
Research Article

Numerical Procedure for Optimizing Dye-Sensitized Solar Cells

1University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
2Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania
3National Institute of Materials Physics, 105 bis Atomistilor Street, P.O. Box MG-7, 077125 Magurele, Romania

Received 23 July 2013; Revised 13 November 2013; Accepted 29 November 2013; Published 5 January 2014

Academic Editor: Hyeong-Ho Park

Copyright © 2014 Mihai Razvan Mitroi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


We propose a numerical procedure consisting of a simplified physical model and a numerical method with the aim of optimizing the performance parameters of dye-sensitized solar cells (DSSCs). We calculate the real rate of absorbed photons (in the dye spectral range) by introducing a factor in order to simplify the light absorption and reflection on TCO electrode. We consider the electrical transport to be purely diffusive and the recombination process only to occur between electrons from the TiO2 conduction band and anions from the electrolyte. The used numerical method permits solving the system of differential equations resulting from the physical model. We apply the proposed numerical procedure on a classical DSSC based on Ruthenium dye in order to validate it. For this, we simulate the J-V characteristics and calculate the main parameters: short-circuit current density , open circuit voltage , fill factor FF, and power conversion efficiency . We analyze the influence of the nature of semiconductor (TiO2) and dye and also the influence of different technological parameters on the performance parameters of DSSCs. The obtained results show that the proposed numerical procedure is suitable for developing a numerical simulation platform for improving the DSSCs performance by choosing the optimal parameters.