Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2014, Article ID 382861, 6 pages
Research Article

A New Method for Fabrication of Nanohydroxyapatite and TCP from the Sea Snail Cerithium vulgatum

1Department of Metal Education, Faculty of Technical Education, Marmara University, Kadıköy, 34722 Istanbul, Turkey
2Center for Nanotechnology and Biomaterials Applied & Research, Marmara University, Kadıköy, 34722 Istanbul, Turkey
3Department of Biomedical Engineering, Faculty of Engineering and Architecture, Istanbul Arel University, Buyukcekmece, 34537 Istanbul, Turkey
4Department of Materials Science and Engineering, University of Ioannina, P.O. Box 1186, 45110 Ioannina, Greece
5Department of Chemistry and Forensic Science, University of Technology Sydney, P.O. Box 123, Broadway, Ultimo, Sydney, NSW 2007, Australia
6Department of Bioengineering, Faculty of Engineering, Marmara University, Kadıköy, 34722 Istanbul, Turkey
7Department of Medical Imaging Techniques, School of Health Related Professions, Marmara University, Tıbbiye Street No. 49, Üsküdar, 34688 Istanbul, Turkey

Received 26 July 2013; Accepted 27 November 2013; Published 2 January 2014

Academic Editor: Il-Kwon Oh

Copyright © 2014 O. Gunduz et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Biphasic bioceramic nanopowders of hydroxyapatite (HA) and β-tricalcium phosphate (TCP) were prepared from shells of the sea snail Cerithium vulgatum (Bruguière, 1792) using a novel chemical method. Calcination of the powders produced was carried out at varying temperatures, specifically at 400°C and 800°C, in air for 4 hours. When compared to the conventional hydrothermal transformation method, this chemical method is very simple, economic, due to the fact that it needs inexpensive and safe equipment, because the transformation of the aragonite and calcite of the shells into the calcium phosphate phases takes place at 80°C under the atmospheric pressure. The powders produced were determined using infrared spectroscopy (FT-IR), X-ray diffraction, and scanning electron microscopy (SEM). The features of the powders produced along with the fact of their biological origin qualify these powders for further consideration and experimentation to fabricate nanoceramic biomaterials.