Journal of Nanomaterials

Journal of Nanomaterials / 2014 / Article
Special Issue

Advanced Nanomaterials and Nanostructures for Tribological Applications

View this Special Issue

Editorial | Open Access

Volume 2014 |Article ID 402198 | 2 pages | https://doi.org/10.1155/2014/402198

Advanced Nanomaterials and Nanostructures for Tribological Applications

Received25 Mar 2014
Accepted25 Mar 2014
Published09 Apr 2014

Lubricating problems are common in many engineering applications, such as aerospace, ground mechanical equipment, and large aircraft carriers. Moreover, the high-performance lubricating materials are the key to ensure high running precision and stability for mechanical systems. With the rapid development of modern technology, various lubricating materials have been developed for different machineries. These developments are geared toward improving the property of materials and allowing them to surmount severe challenges under extreme conditions (e.g., high/low temperature, special media, and unfavorable atmosphere) in the fields of aviation, space, nuclear energy, and microelectronics. The lubricating materials corresponding to the required conditions in these fields must be capable of working in corrosive environments and high/low temperatures for a long time. However, because the conventional lubricating materials cannot satisfy these application requirements, lubricating materials are currently facing a series of challenges [1, 2].

In recent years, much effort has been directed toward preparing high-performance materials and coatings for tribological applications, such as laminated-graded self-lubricating composites [3, 4], composite-lubricating coatings [5], and DLC films with surface texturing [6]. In addition, nanomaterials and nanostructures, because of their special dimensional effects, reveal totally different tribological and mechanical properties compared with traditional materials [7, 8]. The combination of nanomaterials and lubricating composites is a promising way to achieve the optimization of lubricating materials [9]. Meanwhile, the emergences of new preparation technologies [10] and theoretical approaches [11] have hastened the development of an increasingly large number of new lubricating materials and thus speeded up the industrialization process of these materials.

In this special issue, five papers are devoted to the mechanical and tribological performances of nanomaterials and films. The carbon nanolayer, remained on the surface of Ti6Al4V alloy after ion implantation, was proved to have an influence on friction reduction due to the self-lubrication property of the carbon nanolayer. Dual-coated TiO2 nanoparticles as water based lubricant additive and cutting fluids additive provided excellent tribological properties, which might be ascribed to the forming of a dynamic deposition film during rubbing process according to surface analysis. For DLC films, nanotribological properties such as H (Nanoindentation hardness) and nanowear resistance were highly correlated with ID/IG ratio and highly dependent on the films’ nanostructures. Hard and soft multilayered SiCN nanocoatings with high hardness and toughness were prepared by magnetron sputtering. Increased deformation accommodation was achieved for such alternate hard and soft layers as the thin hard layers slide relative to each other due to shear deformation of low modulus layers. This special issue also contains a very interesting hypothesis about developing an elastic property analysis model suitable for three commonly used fabric liners through a theoretical analysis of the elastic properties.

We hope that readers will find in this special issue not only accurate data and updated reviews on the tribological behavior of advanced materials, but also important guidance for the optimization of the advanced lubricating materials.

Yongsheng Zhang
Tianchang Hu
Xianjin Ning
Qi Ding

References

  1. Y. S. Zhang, Y. Fang, H. Z. Fan, J. J. Song, T. C. Hu, and L. T. Hu, High-Performance Ceramic Lubricating Materials, vol. 17 of Advances in Materials Science Research, Nova Science, New York, NY, USA, 2014.
  2. Y. E. Qi, Y. S. Zhang, and L. T. Hu, “High-temperature self-lubricated properties of Al2O3/Mo laminated composites,” Wear, vol. 280-281, pp. 1–4, 2012. View at: Publisher Site | Google Scholar
  3. Y. Fang, Y. S. Zhang, J. J. Song, H. Z. Fan, and L. T. Hu, “Design and fabrication of laminated-graded zirconia self-lubricating composites,” Materials & Design, vol. 49, pp. 421–425, 2013. View at: Google Scholar
  4. Y. E. Qi, Y. S. Zhang, Y. Fang, and L. T. Hu, “Design and preparation of high-performance alumina functional graded self-lubricated ceramic composites,” Composites Part B: Engineering, vol. 47, pp. 145–149, 2013. View at: Google Scholar
  5. T. C. Hu, Y. S. Zhang, and L. T. Hu, “Tribological investigation of MoS2 coatings deposited on the laser textured surface,” Wear, vol. 278-279, pp. 77–82, 2012. View at: Publisher Site | Google Scholar
  6. Q. Ding, L. P. Wang, Y. F. Wang, S. C. Wang, L. T. Hu, and Q. J. Xue, “Improved tribological behavior of DLC films under water lubrication by surface texturing,” Tribology Letters, vol. 41, pp. 439–449, 2011. View at: Publisher Site | Google Scholar
  7. Y. S. Zhang, J. M. Chen, and L. T. Hu, “Progress on tribological investigation of ceramic-based nanocomposites,” Tribology, vol. 26, pp. 284–288, 2006. View at: Google Scholar
  8. T. C. Hu, Y. S. Zhang, and L. T. Hu, “Mechanical and wear characteristic of Y-TZP/Al2O3 nanocomposites,” Industrial Lubrication and Tribology, vol. 66, pp. 209–214, 2014. View at: Google Scholar
  9. Y. S. Zhang, L. T. Hu, J. M. Chen, and W. M. Liu, “Lubrication behavior of Y-TZP/Al2O3/Mo nanocomposites at high temperature,” Wear, vol. 268, pp. 1091–1094, 2010. View at: Publisher Site | Google Scholar
  10. X. J. Ning, J. H. Kim, H. J. Kim, and C. Lee, “Characteristics and heat treatment of cold-sprayed Al-Sn binary alloy coatings,” Applied Surface Science, vol. 255, pp. 3933–3939, 2009. View at: Publisher Site | Google Scholar
  11. Q. Wang and Y. W. Chung, Encyclopedia of Tribology, Springer, New York, NY, USA, 2013.

Copyright © 2014 Yongsheng Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1129 Views | 682 Downloads | 0 Citations
 PDF  Download Citation  Citation
 Download other formatsMore
 Order printed copiesOrder

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at help@hindawi.com to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.