Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2014 (2014), Article ID 526149, 6 pages
Research Article

Surface Wettability of Oxygen Plasma Treated Porous Silicon

1Heavy Oil State Laboratory and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
2College of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China

Received 29 August 2013; Accepted 10 October 2013; Published 16 January 2014

Academic Editor: Marinella Striccoli

Copyright © 2014 Lei Jiang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Oxygen plasma treatment on porous silicon (p-Si) surfaces was studied as a practical and effective means to modify wetting properties of as-fabricated p-Si surfaces, that is, contact angles of the p-Si materials. P-Si samples spanning a wide range of surface nanostructures have been fabricated which were subjected to a series of oxygen plasma treatments. Reduction of the p-Si surface contact angles has been systematically observed, and the surface activation rate constant as a function of different pore geometries has been analyzed to achieve an empirical equation. The underlying diffusion mechanisms have been discussed by taking into account of different pore diameters of p-Si samples. It is envisaged that such an approach as well as the corresponding empirical equation may be used to provide relevant process guidance in order to achieve precise control of p-Si contact angles, which is essential for many p-Si applications especially in biosensor areas.