Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2014, Article ID 594873, 8 pages
Research Article

Large-Scale Synthesis of Silver Nanoparticles by Aqueous Reduction for Low-Temperature Sintering Bonding

1State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
2Zhejiang Province Key Laboratory of Soldering & Brazing Materials and Technology, Zhejiang Metallurgical Research Institute Co., Ltd., Hangzhou 310030, China

Received 28 February 2014; Revised 6 May 2014; Accepted 6 May 2014; Published 21 May 2014

Academic Editor: Tong Zhang

Copyright © 2014 Qiu Xiliang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Silver nanoparticles with average diameter of 22.4 nm were prepared by aqueous reduction method for low-temperature sintering bonding application. The reaction temperature and PVP concentration, which are the influential factors of nanoparticle characteristics, were investigated during reduction process. In our research, monodispersity of nanoparticles was remarkably improved while unfavorable agglomeration was avoided with the AgNO3/PVP mass ratio of 1 : 4 at the reaction temperature 30°C. Besides, copper pads were successfully bonded using sintering paste employing fresh silver nanoparticles with diameter of 20~35 nm at 200°C. In addition, after morphology of the bonding joint was analysed by scanning electron microscope (SEM), the porous sintering characteristics were confirmed.