Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2014, Article ID 762143, 6 pages
http://dx.doi.org/10.1155/2014/762143
Research Article

Carrier Statistics and Quantum Capacitance Models of Graphene Nanoscroll

1Department of Electronic Engineering, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Malaysia
2Nanotechnology Research Center Nanoelectronic Group, Physics Department, Urmia University, Urmia 57147, Iran
3Centre for Artificial Intelligence and Robotics (CAIRO), Universiti Teknologi Malaysia, 81300 Skudai, Johor Bahru, Malaysia

Received 20 January 2014; Accepted 8 April 2014; Published 12 June 2014

Academic Editor: Xuedong Bai

Copyright © 2014 M. Khaledian et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Grundmann, “Nanoscroll formation from strained layer heterostructures,” Applied Physics Letters, vol. 83, no. 12, pp. 2444–2446, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. S. F. Braga, V. R. Coluci, S. B. Legoas, R. Giro, D. S. Galvão, and R. H. Baughman, “Structure and dynamics of carbon nanoscrolls,” Nano Letters, vol. 4, no. 5, pp. 881–884, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. B. V. C. Martins and D. S. Galvão, “Curved graphene nanoribbons: structure and dynamics of carbon nanobelts,” Nanotechnology, vol. 21, no. 7, Article ID 075710, 2010. View at Publisher · View at Google Scholar
  4. Y. Chen, J. Lu, and Z. Gao, “Structural and electronic study of nanoscrolls rolled up by a single graphene sheet,” Journal of Physical Chemistry C, vol. 111, no. 4, pp. 1625–1630, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. X. Peng, J. Zhou, W. Wang, and D. Cao, “Computer simulation for storage of methane and capture of carbon dioxide in carbon nanoscrolls by expansion of interlayer spacing,” Carbon, vol. 48, no. 13, pp. 3760–3768, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. A. K. Schaper, H. Hou, M. Wang, Y. Bando, and D. Golberg, “Observations of the electrical behaviour of catalytically grown scrolled graphene,” Carbon, vol. 49, no. 6, pp. 1821–1828, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. X. Xie, L. Ju, X. Feng et al., “Controlled fabrication of high-quality carbon nanoscrolls from monolayer graphene,” Nano Letters, vol. 9, no. 7, pp. 2565–2570, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Xi, M. Zhang, D. Ma, Y. Zhu, H. Zhang, and Y. Qian, “Controlled synthesis of carbon nanocables and branched-nanobelts,” Carbon, vol. 44, no. 4, pp. 734–741, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. Y.-X. Qi, M.-S. Li, and Y.-J. Bai, “Carbon nanobelts synthesized via chemical metathesis route,” Materials Letters, vol. 61, no. 4-5, pp. 1122–1124, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. X. Shi, N. M. Pugno, and H. Gao, “Mechanics of carbon nanoscrolls: a review,” Acta Mechanica Solida Sinica, vol. 23, no. 6, pp. 484–497, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. K. S. Kim, Y. Zhao, H. Jang et al., “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature, vol. 457, no. 7230, pp. 706–710, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Mpourmpakis, E. Tylianakis, and G. E. Froudakis, “Carbon nanoscrolls: a promising material for hydrogen storage,” Nano Letters, vol. 7, no. 7, pp. 1893–1897, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. E. Perim and D. S. Galvao, “The structure and dynamics of boron nitride nanoscrolls,” Nanotechnology, vol. 20, no. 33, Article ID 335702, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Cao, G. Meng, and P. M. Ajayan, “Nanobelt-templated growth of carbon nanotube rows,” Advanced Materials, vol. 16, no. 1, pp. 40–44, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. L. H. Viculis, J. J. Mack, and R. B. Kaner, “A chemical route to carbon nanoscrolls,” Science, vol. 299, no. 5611, p. 1361, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Xia, J. Xie, H. Chen et al., “Fabrication of carbon nanoscrolls from monolayer graphene,” Small, vol. 6, no. 18, pp. 2010–2019, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. X. Li, X. Hao, M. Zhao et al., “Exfoliation of hexagonal boron nitride by molten hydroxides,” Advanced Materials, vol. 25, no. 15, pp. 2200–2204, 2013. View at Publisher · View at Google Scholar · View at Scopus
  18. E. Perim, R. Paupitz, and D. S. Galvão, “Controlled route to the fabrication of carbon and boron nitride nanoscrolls: a molecular dynamics investigation,” Journal of Applied Physics, vol. 113, no. 5, Article ID 054306, 2013. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Khaledian, M. T. Ahmadi, R. Ismail, and M. Saeidmanesh, “Structural and properties of graphene nanobelts rolled up into spiral by a single graphene sheet,” Journal of Computational and Theoretical Nanoscience, vol. 11, no. 3, pp. 601–606. View at Publisher · View at Google Scholar
  20. J. Liang, D. Akinwande, and H.-S. P. Wong, “Carrier density and quantum capacitance for semiconducting carbon nanotubes,” Journal of Applied Physics, vol. 104, no. 6, Article ID 064515, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. M. T. Ahmadi, J. F. Webb, N. A. Amin et al., “Carbon nanotube capacitance model in degenerate and nondegenerate regimes,” AIP Conference Proceedings, vol. 1337, pp. 173–176, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Lundstrom and J. Guo, Nanoscale Transistors: Device Physics, Modeling and Simulation, Springer, 1st edition, 2005.
  23. R. Rurali, V. R. Coluci, and D. S. Galvão, “Prediction of giant electroactuation for papyruslike carbon nanoscroll structures: first-principles calculations,” Physical Review B: Condensed Matter and Materials Physics, vol. 74, no. 8, Article ID 085414, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Lundstrom and J. Guo, “Basic concept,” in Nanoscale Transistors: Device Physics, Modeling and Simulation, pp. 1–50, Springer Science+Business Media, Inc., New York, NY, USA, 2006. View at Publisher · View at Google Scholar
  25. G. S. Kliros, “Quantum capacitance of bilayer graphene,” in Proceedings of the 2010 33rd International Semiconductor Conference (CAS '10), vol. 1, pp. 69–72, October 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. V. Parkash and A. K. Goel, “Quantum capacitance extraction for carbon nanotube interconnects,” in Proceedings of the 20th International Conference on Microelectronics (ICM '08), pp. 292–295, December 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Fang, A. Konar, H. Xing, and D. Jena, “Carrier statistics and quantum capacitance of graphene sheets and ribbons,” Applied Physics Letters, vol. 91, no. 9, Article ID 092109, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Xia, F. Chen, J. Li, and N. Tao, “Measurement of the quantum capacitance of graphene,” Nature Nanotechnology, vol. 4, no. 8, pp. 505–509, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. P. R. Wallace, “The band theory of graphite,” Physical Review, vol. 71, no. 9, pp. 622–634, 1947. View at Publisher · View at Google Scholar
  30. M. T. Ahmadi, J. Frank Webb, R. Ismail, and M. Rahmandoust, “Carbon-based materials concepts and basic physics,” in Advanced Nanoelectronics, pp. 65–98, 2012. View at Google Scholar
  31. S. Datta, Quantum Transport: Atom to Transistor, Cambridge University Press, 2nd edition, 2005.
  32. M. T. Ahmadi, Z. Johari, D. C. Y. Chek, N. A. Amin, and R. Ismail, “Modelling of graphene nanoribbon Fermi energy,” Journal of Nanomaterials, vol. 2010, Article ID 909347, 6 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. R. B. Dingle, Asymptotic Expansions: Their Derivation and Interpretation, Academic Press, 1973.
  34. L. Wei, D. J. Frank, L. Chang, and H.-S. P. Wong, “Noniterative compact modeling for intrinsic carbon-nanotube FETs: quantum capacitance and ballistic transport,” IEEE Transactions on Electron Devices, vol. 58, no. 8, pp. 2456–2465, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Hamzah, M. T. Ahmadi, and R. Ismail, “Quantum capacitance effect on zig-zag graphene nanoscrolls (ZGNS) (16, 0),” Modern Physics Letters B, vol. 27, no. 1, Article ID 1350002, 2013. View at Publisher · View at Google Scholar · View at Scopus