Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2014, Article ID 786312, 7 pages
http://dx.doi.org/10.1155/2014/786312
Research Article

Theoretical Study of Wood Microwave Pretreatment in Rectangular Cavity for Fabricating Wood-Based Nanocomposites

1Institute of Mathematics and Physics, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
2Material Science and Engineering School, Central South University of Forestry and Technology, Changsha, Hunan 410004, China

Received 24 April 2014; Accepted 14 June 2014; Published 2 July 2014

Academic Editor: Li Li

Copyright © 2014 Yongfeng Luo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Modifying wood by high intensive microwave pretreatment method is widely researched for the fabrication of wood-based nanocomposites, but the temperature uniformity and energy efficiency of microwave pretreatment have not reached the ideal state. In this study, the pretreated wood in rectangular cavity by high intensive microwave is theoretically studied by the finite element method based on the Maxwell electromagnetic field equations and the heat and mass transfer theory. The results show that the temperature uniformity and energy efficiency are related to the microwave feeding modes. Compared with the single-port and the two-port feeding mode, the four-port feeding mode is the best case on temperature uniformity and energy efficiency. The optimized parameters of cavity to pretreatment wood are achieved, which are that the height of cavities is between 0.08 m and 0.11 m in the four-port feeding mode when the thickness of wood is 0.06 m.