Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2014, Article ID 786312, 7 pages
http://dx.doi.org/10.1155/2014/786312
Research Article

Theoretical Study of Wood Microwave Pretreatment in Rectangular Cavity for Fabricating Wood-Based Nanocomposites

1Institute of Mathematics and Physics, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
2Material Science and Engineering School, Central South University of Forestry and Technology, Changsha, Hunan 410004, China

Received 24 April 2014; Accepted 14 June 2014; Published 2 July 2014

Academic Editor: Li Li

Copyright © 2014 Yongfeng Luo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. W. Turner, J. R. Puiggali, and W. Jomaa, “A numerical investigation of combined microwave and convective drying of a hygroscopic porous material: a study based on pine wood,” Chemical Engineering Research and Design, vol. 76, no. 2, pp. 193–209, 1998. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Oloyede and P. Groombridge, “Influence of microwave heating on the mechanical properties of wood,” Journal of Materials Processing Technology, vol. 100, no. 1, pp. 67–73, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. X. Li, Y. Zhou, Y. Yan, Z. Cai, and F. Feng, “A single cell model for pretreatment of wood by microwave explosion,” Holzforschung, vol. 64, no. 5, pp. 633–637, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. Z. YongDong, F. Feng, L. XianJun, J. XiaoMei, and C. ZhiLin, “Effects of microwave treatment on residue growth stress and microstructure of Eucalyptus urophylla,” Journal of Beijing Forestry University, vol. 31, no. 2, pp. 146–150, 2009. View at Google Scholar · View at Scopus
  5. G. Torgovnikov and P. Vinden, “Microwave wood modification technology and its applications,” Forest Products Journal, vol. 60, no. 2, pp. 173–182, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Torgovnikov and P. Vinden, “High-intensity microwave wood modification for increasing permeability,” Forest Products Journal, vol. 59, no. 4, pp. 84–92, 2009. View at Google Scholar · View at Scopus
  7. S. R. Przewloka, J. A. Hann, and P. Vinden, “Assessment of commercial low viscosity resins as binders in the wood composite material Vintorg,” Holz als Roh-und Werkstoff, vol. 65, no. 3, pp. 209–214, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Sugiyanto, P. Vinden, G. Torgovnikov, and S. Przewloka, “Microwave surface modification of Pinus radiata peeler cores: technical and cost analyses,” Forest Products Journal, vol. 60, no. 4, pp. 346–352, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Torgovnikov and P. Vinden, “New 300 kW plant for microwave wood modification,” in Proceedings of the International Microwave Power Institutes 40th Annual Symposium, pp. 260–263, Boston, Mass, USA, 2006.
  10. P. Vinden, G. Torgovnikov, and J. Hann, “Microwave modification of Radiata pine railway sleepers for preservative treatment,” European Journal of Wood and Wood Products, vol. 69, no. 2, pp. 271–279, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Guangming, L. Yuan, and H. Yunchu, “Research on dispersing and surface treatment of inorganic-nanoparticles used for wood/inorganic-nano-composite,” Wuhan Ligong Daxue Xuebo Jiaotong Kexue Yu GongchengBan, vol. 32, no. 1, pp. 142–145, 2008 (Chinese). View at Google Scholar · View at Scopus
  12. G. Yuan, Y. Liu, Y. Wu, Y. Hu, and Z. Wu, “Study on structure characterization and combining mechanism of Chinese fir/nano SiO2 composite,” Journal of Hunan University Natural Sciences, vol. 36, no. 9, pp. 59–62, 2009 (Chinese). View at Google Scholar · View at Scopus
  13. D. N. Obanda, T. F. Shupe, and H. M. Barnes, “Reducing leaching of boron-based wood preservatives—a review of research,” Bioresource Technology, vol. 99, no. 15, pp. 7312–7322, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. S. N. Kartal, T. Yoshimura, and Y. Imamura, “Modification of wood with Si compounds to limit boron leaching from treated wood and to increase termite and decay resistance,” International Biodeterioration and Biodegradation, vol. 63, no. 2, pp. 187–190, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. E. Baysal, M. Altinok, M. Colak, S. Kiyoka Ozaki, and H. Toker, “Fire resistance of Douglas fir (Pseudotsuga menzieesi) treated with borates and natural extractives,” Bioresource Technology, vol. 98, no. 5, pp. 1101–1105, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. A. M. Pereyra and C. A. Giudice, “Flame-retardant impregnants for woods based on alkaline silicates,” Fire Safety Journal, vol. 44, no. 4, pp. 497–503, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. S. N. Kartal, W.-J. Hwang, A. Yamamoto, M. Tanaka, K. Matsumura, and Y. Imamura, “Wood modification with a commercial silicon emulsion: effects on boron release and decay and termite resistance,” International Biodeterioration & Biodegradation, vol. 60, no. 3, pp. 189–196, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Ciudad, A. M. Lacasta, L. Haurie, J. Formosa, and J. M. Chimenos, “Improvement of passive fire protection in a gypsum panel by adding inorganic fillers: Experiment and theory,” Applied Thermal Engineering, vol. 31, no. 17-18, pp. 3971–3978, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. P. Kiliaris and C. D. Papaspyrides, “Polymer/layered silicate (clay) nanocomposites: an overview of flame retardancy,” Progress in Polymer Science, vol. 35, no. 7, pp. 902–958, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. K. G. Ayappa, “Modelling transport processes during microwave heating: a review,” Reviews in Chemical Engineering, vol. 13, no. 2, pp. 1–69, 1997. View at Google Scholar · View at Scopus
  21. L. A. Campañone, C. A. Paola, and R. H. Mascheroni, “Modeling and simulation of microwave heating of foods under different process schedules,” Food and Bioprocess Technology, vol. 5, no. 2, pp. 738–749, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. F. Marra, M. V. De Bonis, and G. Ruocco, “Combined microwaves and convection heating: a conjugate approach,” Journal of Food Engineering, vol. 97, no. 1, pp. 31–39, 2010. View at Publisher · View at Google Scholar · View at Scopus