Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2015 (2015), Article ID 209032, 22 pages
http://dx.doi.org/10.1155/2015/209032
Review Article

Perspectives on the Emerging Applications of Multifaceted Biomedical Polymeric Nanomaterials

1Institute of Biological Science, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
2Biotechnology Department, Faculty of Science, Federal University Dutse, PMB 7156, Dutse, Jigawa, Nigeria

Received 26 March 2015; Revised 15 June 2015; Accepted 15 June 2015

Academic Editor: Yanlin Song

Copyright © 2015 Ahmad Mohammed Gumel et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Bauri, S. G. Roy, S. Pant, and P. De, “Controlled synthesis of amino acid-based pH-responsive chiral polymers and self-assembly of their block copolymers,” Langmuir, vol. 29, no. 8, pp. 2764–2774, 2013. View at Publisher · View at Google Scholar · View at Scopus
  2. M. B. Dowling, J.-H. Lee, and S. R. Raghavan, “pH-responsive jello: gelatin gels containing fatty acid vesicles,” Langmuir, vol. 25, no. 15, pp. 8519–8525, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Galindo-Gonzalez, S. Gantz, L. Ourry, F. Mammeri, S. Ammar-Merah, and A. Ponton, “Elaboration and rheological investigation of magnetic sensitive nanocomposite biopolymer networks,” Macromolecules, vol. 47, no. 9, pp. 3136–3144, 2014. View at Publisher · View at Google Scholar · View at Scopus
  4. W.-H. Hsieh, S.-F. Chang, H.-M. Chen, J.-H. Chen, and J. Liaw, “Oral gene delivery with cyclo-(d-Trp-Tyr) peptide nanotubes,” Molecular Pharmaceutics, vol. 9, no. 5, pp. 1231–1249, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. E. Brewer, J. Coleman, and A. Lowman, “Emerging technologies of polymeric nanoparticles in cancer drug delivery,” Journal of Nanomaterials, vol. 2011, Article ID 408675, 10 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Kim, M. Lee, H. Park et al., “Cell-permeable and biocompatible polymeric nanoparticles for apoptosis imaging,” Journal of the American Chemical Society, vol. 128, no. 11, pp. 3490–3491, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. I. Roy and M. N. Gupta, “Smart polymeric materials: emerging biochemical applications,” Chemistry & Biology, vol. 10, no. 12, pp. 1161–1171, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Cheng, F. Meng, C. Deng, H.-A. Klok, and Z. Zhong, “Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery,” Biomaterials, vol. 34, no. 14, pp. 3647–3657, 2013. View at Publisher · View at Google Scholar · View at Scopus
  9. C. C. Berry, S. Wells, S. Charles, and A. S. G. Curtis, “Dextran and albumin derivatised iron oxide nanoparticles: influence on fibroblasts in vitro,” Biomaterials, vol. 24, no. 25, pp. 4551–4557, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. H.-J. Cho, I.-S. Yoon, H. Y. Yoon et al., “Polyethylene glycol-conjugated hyaluronic acid-ceramide self-assembled nanoparticles for targeted delivery of doxorubicin,” Biomaterials, vol. 33, no. 4, pp. 1190–1200, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. J. S. Rudra, S. Mishra, A. S. Chong et al., “Self-assembled peptide nanofibers raising durable antibody responses against a malaria epitope,” Biomaterials, vol. 33, no. 27, pp. 6476–6484, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Junka, C. M. Valmikinathan, D. M. Kalyon, and X. Yu, “Laminin functionalized biomimetic nanofibers for nerve tissue engineering,” Journal of Biomaterials and Tissue Engineering, vol. 3, no. 4, pp. 494–502, 2013. View at Publisher · View at Google Scholar · View at Scopus
  13. A. M. Gumel and M. S. M. Annuar, “Nanocomposites of polyhydroxyalkanoates (PHAs),” in Polyhydroxyalkanoate (PHA) Based Blends, Composites and Nanocomposites, I. Roy and P. M. Visakh, Eds., pp. 98–118, Royal Society of Chemistry, London, UK, 2014. View at Google Scholar
  14. B. Pokroy, A. K. Epstein, M. C. M. Persson-Gulda, and J. Aizenberg, “Fabrication of bioinspired actuated nanostructures with arbitrary geometry and stiffness,” Advanced Materials, vol. 21, no. 4, pp. 463–469, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Guo, W. Chen, X. Sun, Y.-N. Liu, J. Li, and J. Wang, “Theranostic magnetoliposomes coated by carboxymethyl dextran with controlled release by low-frequency alternating magnetic field,” Carbohydrate Polymers, vol. 118, pp. 209–217, 2015. View at Publisher · View at Google Scholar · View at Scopus
  16. A. M. Gumel and M. S. M. Annuar, “Poly-3-hydroxyalkanoates-co-polyethylene glycol methacrylate copolymers for pH responsive and shape memory hydrogel,” Journal of Applied Polymer Science, vol. 131, no. 23, 2014. View at Publisher · View at Google Scholar · View at Scopus
  17. W. E. Hennink, O. Franssen, W. N. E. van Dijk-Wolthuis, and H. Talsma, “Dextran hydrogels for the controlled release of proteins,” Journal of Controlled Release, vol. 48, no. 2-3, pp. 107–114, 1997. View at Publisher · View at Google Scholar · View at Scopus
  18. M. P. Fink, E. Abraham, J.-L. Vincent, and P. Kochanek, Textbook of Critical Care: With E-Edition, Saunders Elsevier, 2005.
  19. H. Beloeil, J.-X. Mazoit, D. Benhamou, and J. Duranteau, “Norepinephrine kinetics and dynamics in septic shock and trauma patients,” British Journal of Anaesthesia, vol. 95, no. 6, pp. 782–788, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. A. M. Gumel, M. S. Annuar, K. A. Ishak, and N. Ahmad, “Carbon nanofibers-poly-3-hydroxyalkanoates nanocomposite: ultrasound-assisted dispersion and thermostructural properties,” Journal of Nanomaterials, vol. 2014, Article ID 264206, 10 pages, 2014. View at Publisher · View at Google Scholar
  21. K. Autumn, S. T. Hsieh, D. M. Dudek, J. Chen, C. Chitaphan, and R. J. Full, “Dynamics of geckos running vertically,” Journal of Experimental Biology, vol. 209, no. 2, pp. 260–272, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Autumn and A. M. Peattie, “Mechanisms of adhesion in geckos,” Integrative and Comparative Biology, vol. 42, no. 6, pp. 1081–1090, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. M. J. McHenry and S. M. van Netten, “The flexural stiffness of superficial neuromasts in the zebrafish (Danio rerio) lateral line,” The Journal of Experimental Biology, vol. 210, no. 23, pp. 4244–4253, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. P. A. Guerette, S. Hoon, Y. Seow et al., “Accelerating the design of biomimetic materials by integrating RNA-seq with proteomics and materials science,” Nature Biotechnology, vol. 31, no. 10, pp. 908–915, 2013. View at Publisher · View at Google Scholar · View at Scopus
  25. A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, “Matrix elasticity directs stem cell lineage specification,” Cell, vol. 126, no. 4, pp. 677–689, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. D. Discher, “Matrix elasticity directs stem cell lineage specification,” APS March Meeting Abstracts, vol. 55, no. 2, p. 7003, 2010. View at Google Scholar
  27. J. T. Rutka, G. Apodaca, R. Stern, and M. Rosenblum, “The extracellular matrix of the central and peripheral nervous systems: structure and function,” Journal of Neurosurgery, vol. 69, no. 2, pp. 155–170, 1988. View at Publisher · View at Google Scholar · View at Scopus
  28. S.-H. Chen, G.-J. Lai, and J.-P. Chen, “Preparation of biomimetic nanofibers by electrospinning of blends of silk fibroin and chitosan for bone tissue engineering,” in Proceedings of the IEEE 4th International Nanoelectronics Conference (INEC '11), pp. 1–2, IEEE, Taoyuan, Taiwan, June 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Liao, B. Li, Z. Ma, H. Wei, C. Chan, and S. Ramakrishna, “Biomimetic electrospun nanofibers for tissue regeneration,” Biomedical Materials, vol. 1, no. 3, p. R45, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. F. Wang, P. Liu, L. Sun, C. Li, V. A. Petrenko, and A. Liu, “Bio-mimetic nanostructure self-assembled from Au@Ag heterogeneous nanorods and phage fusion proteins for targeted tumor optical detection and photothermal therapy,” Scientific Reports, vol. 4, article 6808, 2014. View at Publisher · View at Google Scholar
  31. T.-S. Wong, S. H. Kang, S. K. Y. Tang et al., “Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity,” Nature, vol. 477, no. 7365, pp. 443–447, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. W. K. Laskey, C. W. Yancy, and W. H. Maisel, “Thrombosis in coronary drug-eluting stents: report from the meeting of the Circulatory System Medical Devices Advisory Panel of the Food and Drug Administration Center for Devices and Radiologic Health, December 7-8, 2006,” Circulation, vol. 115, no. 17, pp. 2352–2357, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. D. C. Leslie, A. Waterhouse, J. B. Berthet et al., “A bioinspired omniphobic surface coating on medical devices prevents thrombosis and biofouling,” Nature Biotechnology, vol. 32, no. 11, pp. 1134–1140, 2014. View at Publisher · View at Google Scholar
  34. R. Hensel, A. Finn, R. Helbig et al., “Biologically inspired omniphobic surfaces by reverse imprint lithography,” Advanced Materials, vol. 26, no. 13, pp. 2029–2033, 2014. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Tuteja, W. Choi, J. M. Mabry, G. H. McKinley, and R. E. Cohen, “Robust omniphobic surfaces,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 47, pp. 18200–18205, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. P. Fuchs, C. Loeseken, J. K. Schubert, and W. Miekisch, “Breath gas aldehydes as biomarkers of lung cancer,” International Journal of Cancer, vol. 126, no. 11, pp. 2663–2670, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. J. H. Lim, J. Park, E. H. Oh, H. J. Ko, S. Hong, and T. H. Park, “Nanovesicle-based bioelectronic nose for the diagnosis of lung cancer from human blood,” Advanced Healthcare Materials, vol. 3, no. 3, pp. 360–366, 2014. View at Publisher · View at Google Scholar · View at Scopus
  38. Z. Ding, S. W. Annie Bligh, L. Tao et al., “Molecularly imprinted polymer based on MWCNT-QDs as fluorescent biomimetic sensor for specific recognition of target protein,” Materials Science and Engineering C, vol. 48, pp. 469–479, 2015. View at Publisher · View at Google Scholar · View at Scopus
  39. L. P. Biró, “Photonic nanoarchitectures of biologic origin in butterflies and beetles,” Materials Science and Engineering B, vol. 169, no. 1–3, pp. 3–11, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. L. P. Biró, K. Kertész, Z. Vértesy et al., “Living photonic crystals: butterfly scales—nanostructure and optical properties,” Materials Science and Engineering C, vol. 27, no. 5–8, pp. 941–946, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. K. Kertész, G. Molnár, Z. Vértesy et al., “Photonic band gap materials in butterfly scales: a possible source of ‘blueprints’,” Materials Science and Engineering: B, vol. 149, no. 3, pp. 259–265, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Physical Review Letters, vol. 58, no. 20, pp. 2059–2062, 1987. View at Publisher · View at Google Scholar · View at Scopus
  43. A. C. Arsenault, D. P. Puzzo, I. Manners, and G. A. Ozin, “Photonic-crystal full-colour displays,” Nature Photonics, vol. 1, no. 8, pp. 468–472, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. K. M. Weeks and D. M. Mauger, “Exploring RNA structural codes with SHAPE chemistry,” Accounts of Chemical Research, vol. 44, no. 12, pp. 1280–1291, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. W. W. Grabow and L. Jaeger, “RNA self-assembly and RNA nanotechnology,” Accounts of Chemical Research, vol. 47, no. 6, pp. 1871–1880, 2014. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Chakraborty, S. Mehtab, and Y. Krishnan, “The predictive power of synthetic nucleic acid technologies in RNA biology,” Accounts of Chemical Research, vol. 47, no. 6, pp. 1710–1719, 2014. View at Publisher · View at Google Scholar · View at Scopus
  47. N. K. Navani and Y. Li, “Nucleic acid aptamers and enzymes as sensors,” Current Opinion in Chemical Biology, vol. 10, no. 3, pp. 272–281, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. K. Schlosser and Y. Li, “Biologically inspired synthetic enzymes made from DNA,” Chemistry and Biology, vol. 16, no. 3, pp. 311–322, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. J. Li, C. Fan, H. Pei, J. Shi, and Q. Huang, “Smart drug delivery nanocarriers with self-assembled DNA nanostructures,” Advanced Materials, vol. 25, no. 32, pp. 4386–4396, 2013. View at Publisher · View at Google Scholar · View at Scopus
  50. Y. Lu and J. Liu, “Smart nanomaterials inspired by biology: dynamic assembly of error-free nanomaterials in response to multiple chemical and biological stimuli,” Accounts of Chemical Research, vol. 40, no. 5, pp. 315–323, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. J. C. Cochrane and S. A. Strobel, “Catalytic strategies of self-cleaving ribozymes,” Accounts of Chemical Research, vol. 41, no. 8, pp. 1027–1035, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. R. Orbach, B. Willner, and I. Willner, “Catalytic nucleic acids (DNAzymes) as functional units for logic gates and computing circuits: from basic principles to practical applications,” Chemical Communications, vol. 51, no. 20, pp. 4144–4160, 2015. View at Publisher · View at Google Scholar
  53. I. Willner, B. Shlyahovsky, M. Zayats, and B. Willner, “DNAzymes for sensing, nanobiotechnology and logic gate applications,” Chemical Society Reviews, vol. 37, no. 6, pp. 1153–1165, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. A. Haller, M. F. Soulière, and R. Micura, “The dynamic nature of RNA as key to understanding riboswitch mechanisms,” Accounts of Chemical Research, vol. 44, no. 12, pp. 1339–1348, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. D. J. Goss and E. C. Theil, “Iron responsive mRNAs: a family of Fe2+sensitive riboregulators,” Accounts of Chemical Research, vol. 44, no. 12, pp. 1320–1328, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. E. G. Bellomo, M. D. Wyrsta, L. Pakstis, D. J. Pochan, and T. J. Deming, “Stimuli-responsive polypeptide vesicles by conformation-specific assembly,” Nature Materials, vol. 3, no. 4, pp. 244–248, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. S. Zhang and Z. Li, “Stimuli-responsive polypeptide materials prepared by ring-opening polymerization of α-amino acid N-carboxyanhydrides,” Journal of Polymer Science B: Polymer Physics, vol. 51, no. 7, pp. 546–555, 2013. View at Publisher · View at Google Scholar · View at Scopus
  58. A. O. Elzoghby, W. M. Samy, and N. A. Elgindy, “Protein-based nanocarriers as promising drug and gene delivery systems,” Journal of Controlled Release, vol. 161, no. 1, pp. 38–49, 2012. View at Publisher · View at Google Scholar · View at Scopus
  59. Q.-Y. Dong, M.-Y. Chen, Y. Xin et al., “Alginate-based and protein-based materials for probiotics encapsulation: a review,” International Journal of Food Science and Technology, vol. 48, no. 7, pp. 1339–1351, 2013. View at Publisher · View at Google Scholar · View at Scopus
  60. A. M. Gumel, M. H. Aris, and M. S. M. Annuar, “Modification of polyhydroxyalkanoates (PHAs),” in Polyhydroxyalkanoate (PHA) Based Blends, Composites and Nanocomposites, I. Roy and P. M. Visakh, Eds., pp. 141–182, The Royal Society of Chemistry, London, UK, 2014. View at Google Scholar
  61. R. R. Breaker and G. F. Joyce, “A DNA enzyme that cleaves RNA,” Chemistry & Biology, vol. 1, no. 4, pp. 223–229, 1994. View at Publisher · View at Google Scholar · View at Scopus
  62. R. R. Breaker, “DNA enzymes,” Nature Biotechnology, vol. 15, no. 5, pp. 427–431, 1997. View at Publisher · View at Google Scholar
  63. Y. Tian and C. Mao, “DNAzyme amplification of molecular beacon signal,” Talanta, vol. 67, no. 3, pp. 532–537, 2005. View at Publisher · View at Google Scholar · View at Scopus
  64. Y. Xiao, A. A. Rowe, and K. W. Plaxco, “Electrochemical detection of parts-per-billion lead via an electrode-bound DNAzyme assembly,” Journal of the American Chemical Society, vol. 129, no. 2, pp. 262–263, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. X. Yang, J. Xu, X. Tang, H. Liu, and D. Tian, “A novel electrochemical DNAzyme sensor for the amplified detection of Pb2+ ions,” Chemical Communications, vol. 46, no. 18, pp. 3107–3109, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. P. M. Tiwari, K. Vig, V. A. Dennis, and S. R. Singh, “Functionalized gold nanoparticles and their biomedical applications,” Nanomaterials, vol. 1, no. 1, pp. 31–63, 2011. View at Publisher · View at Google Scholar
  67. K. Tram, P. Kanda, B. J. Salena, S. Huan, and Y. Li, “Translating bacterial detection by DNAzymes into a litmus test,” Angewandte Chemie, vol. 126, no. 47, pp. 13013–13016, 2014. View at Publisher · View at Google Scholar
  68. A. K. L. Darius, N. J. Ling, and U. Mahesh, “Visual detection of DNA from salmonella and mycobacterium using split DNAzymes,” Molecular BioSystems, vol. 6, no. 5, pp. 792–794, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. C. W. Brown III, M. R. Lakin, D. Stefanovic, and S. W. Graves, “Catalytic molecular logic devices by DNAzyme displacement,” ChemBioChem, vol. 15, no. 7, pp. 950–954, 2014. View at Publisher · View at Google Scholar · View at Scopus
  70. H. Gu, K. Furukawa, and R. R. Breaker, “Engineered allosteric ribozymes that sense the bacterial second messenger cyclic diguanosyl 5′-monophosphate,” Analytical Chemistry, vol. 84, no. 11, pp. 4935–4941, 2012. View at Publisher · View at Google Scholar · View at Scopus
  71. K. A. Woodrow, Y. Cu, C. J. Booth, J. K. Saucier-Sawyer, M. J. Wood, and W. M. Saltzman, “Intravaginal gene silencing using biodegradable polymer nanoparticles densely loaded with small-interfering RNA,” Nature Materials, vol. 8, no. 6, pp. 526–533, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. K. Wang, Y. Li, G. Zhao et al., “Inhibition of human cytomegalovirus DNA replication by small interfering RNAs targeted to UL49,” Acta Biochimica et Biophysica Sinica, vol. 45, no. 5, pp. 401–407, 2013. View at Publisher · View at Google Scholar · View at Scopus
  73. S. B. Kutluay, T. Zang, D. Blanco-Melo et al., “Global changes in the RNA binding specificity of HIV-1 Gag regulate virion genesis,” Cell, vol. 159, no. 5, pp. 1096–1109, 2014. View at Publisher · View at Google Scholar · View at Scopus
  74. D. Ramalingam, S. Duclair, S. A. K. Datta, A. Ellington, A. Rein, and V. R. Prasad, “RNA aptamers directed to human immunodeficiency virus type 1 gag polyprotein bind to the matrix and nucleocapsid domains and inhibit virus production,” Journal of Virology, vol. 85, no. 1, pp. 305–314, 2011. View at Publisher · View at Google Scholar · View at Scopus
  75. N. Sarver, E. M. Cantin, P. S. Chang et al., “Ribozymes as potential anti-HIV-1 therapeutic agents,” Science, vol. 247, no. 4947, pp. 1222–1225, 1990. View at Publisher · View at Google Scholar · View at Scopus
  76. R. J. Scarborough, M. V. Lévesque, J.-P. Perreault, and A. Gatignol, “Design and evaluation of clinically relevant SOFA-HDV ribozymes targeting HIV RNA,” in Therapeutic Applications of Ribozymes and Riboswitches, vol. 1103 of Methods in Molecular Biology, pp. 31–43, Springer, Berlin, Germany, 2014. View at Publisher · View at Google Scholar
  77. J. Mulhbacher, P. St-Pierre, and D. A. Lafontaine, “Therapeutic applications of ribozymes and riboswitches,” Current Opinion in Pharmacology, vol. 10, no. 5, pp. 551–556, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. P. He, D. Zhu, J.-J. Hu, J. Peng, L.-S. Chen, and G.-X. Lu, “PcDNA3.1(−)-mediated ribozyme targeting of HER-2 suppresses breast cancer tumor growth,” Molecular Biology Reports, vol. 37, no. 3, pp. 1597–1604, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. K. E. Deigan and A. R. Ferré-D'Amaré, “Riboswitches: discovery of drugs that target bacterial gene-regulatory RNAs,” Accounts of Chemical Research, vol. 44, no. 12, pp. 1329–1338, 2011. View at Publisher · View at Google Scholar · View at Scopus
  80. P. Ketzer, J. K. Kaufmann, S. Engelhardt et al., “Artificial riboswitches for gene expression and replication control of DNA and RNA viruses,” Proceedings of the National Academy of Sciences of the United States of America, vol. 111, no. 5, pp. E554–E562, 2014. View at Publisher · View at Google Scholar · View at Scopus
  81. D. M. Floss, K. Schallau, S. Rose-John, U. Conrad, and J. Scheller, “Elastin-like polypeptides revolutionize recombinant protein expression and their biomedical application,” Trends in Biotechnology, vol. 28, no. 1, pp. 37–45, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. S. R. MacEwan and A. Chilkoti, “Elastin-like polypeptides: biomedical applications of tunable biopolymers,” Peptide Science, vol. 94, no. 1, pp. 60–77, 2010. View at Publisher · View at Google Scholar
  83. J. Huang and A. Heise, “Stimuli responsive synthetic polypeptides derived from N-carboxyanhydride (NCA) polymerisation,” Chemical Society Reviews, vol. 42, no. 17, pp. 7373–7390, 2013. View at Publisher · View at Google Scholar · View at Scopus
  84. D. J. Callahan, W. Liu, X. Li et al., “Triple stimulus-responsive polypeptide nanoparticles that enhance intratumoral spatial distribution,” Nano Letters, vol. 12, no. 4, pp. 2165–2170, 2012. View at Publisher · View at Google Scholar · View at Scopus
  85. K. E. Uhrich, S. M. Cannizzaro, R. S. Langer, and K. M. Shakesheff, “Polymeric systems for controlled drug release,” Chemical Reviews, vol. 99, no. 11, pp. 3181–3198, 1999. View at Publisher · View at Google Scholar · View at Scopus
  86. A. C. R. Grayson, I. S. Choi, B. M. Tyler et al., “Multi-pulse drug delivery from a resorbable polymeric microchip device,” Nature Materials, vol. 2, no. 11, pp. 767–772, 2003. View at Publisher · View at Google Scholar · View at Scopus
  87. A. J. Simnick, D. W. Lim, D. Chow, and A. Chilkoti, “Biomedical and biotechnological applications of elastin-like polypeptides,” Polymer Reviews, vol. 47, no. 1, pp. 121–154, 2007. View at Publisher · View at Google Scholar · View at Scopus
  88. K. Wang, G.-F. Luo, Y. Liu et al., “Redox-sensitive shell cross-linked PEG-polypeptide hybrid micelles for controlled drug release,” Polymer Chemistry, vol. 3, no. 4, pp. 1084–1090, 2012. View at Publisher · View at Google Scholar · View at Scopus
  89. G. Ciofani, G. G. Genchi, V. Mattoli, B. Mazzolai, and A. Bandiera, “The potential of recombinant human elastin-like polypeptides for drug delivery,” Expert Opinion on Drug Delivery, vol. 11, no. 10, pp. 1507–1512, 2014. View at Publisher · View at Google Scholar · View at Scopus
  90. B. C. Dash, S. Mahor, O. Carroll et al., “Tunable elastin-like polypeptide hollow sphere as a high payload and controlled delivery gene depot,” Journal of Controlled Release, vol. 152, no. 3, pp. 382–392, 2011. View at Publisher · View at Google Scholar · View at Scopus
  91. H.-C. Huang, C. R. Walker, A. Nanda, and K. Rege, “Laser welding of ruptured intestinal tissue using plasmonic polypeptide nanocomposite solders,” ACS Nano, vol. 7, no. 4, pp. 2988–2998, 2013. View at Publisher · View at Google Scholar · View at Scopus
  92. C. M. Bellingham, M. A. Lillie, J. M. Gosline et al., “Recombinant human elastin polypeptides self-assemble into biomaterials with elastin-like properties,” Biopolymers, vol. 70, no. 4, pp. 445–455, 2003. View at Publisher · View at Google Scholar · View at Scopus
  93. D. H. T. Le, R. Hanamura, D.-H. Pham et al., “Self-assembly of elastin-mimetic double hydrophobic polypeptides,” Biomacromolecules, vol. 14, no. 4, pp. 1028–1034, 2013. View at Publisher · View at Google Scholar · View at Scopus
  94. L. Lorand and R. M. Graham, “Transglutaminases: crosslinking enzymes with pleiotropic functions,” Nature Reviews Molecular Cell Biology, vol. 4, no. 2, pp. 140–156, 2003. View at Publisher · View at Google Scholar · View at Scopus
  95. M. K. McHale, L. A. Setton, and A. Chilkoti, “Synthesis and in vitro evaluation of enzymatically cross-linked elastin-like polypeptide gels for cartilaginous tissue repair,” Tissue Engineering, vol. 11, no. 11-12, pp. 1768–1779, 2005. View at Publisher · View at Google Scholar · View at Scopus
  96. D. Bedell-Hogan, P. Trackman, W. Abrams, J. Rosenbloom, and H. Kagan, “Oxidation, cross-linking, and insolubilization of recombinant tropoelastin by purified lysyl oxidase,” The Journal of Biological Chemistry, vol. 268, no. 14, pp. 10345–10350, 1993. View at Google Scholar · View at Scopus
  97. U. M. Krishna, A. W. Martinez, J. M. Caves, and E. L. Chaikof, “Hydrazone self-crosslinking of multiphase elastin-like block copolymer networks,” Acta Biomaterialia, vol. 8, no. 3, pp. 988–997, 2012. View at Publisher · View at Google Scholar · View at Scopus
  98. S. Lv, M. Li, Z. Tang et al., “Doxorubicin-loaded amphiphilic polypeptide-based nanoparticles as an efficient drug delivery system for cancer therapy,” Acta Biomaterialia, vol. 9, no. 12, pp. 9330–9342, 2013. View at Publisher · View at Google Scholar · View at Scopus
  99. X.-X. Xia, M. Wang, Y. Lin, Q. Xu, and D. L. Kaplan, “Hydrophobic drug-triggered self-assembly of nanoparticles from silk-elastin-like protein polymers for drug delivery,” Biomacromolecules, vol. 15, no. 3, pp. 908–914, 2014. View at Publisher · View at Google Scholar · View at Scopus
  100. W. Huang, A. Rollett, and D. L. Kaplan, “Silk-elastin-like protein biomaterials for the controlled delivery of therapeutics,” Expert Opinion on Drug Delivery, vol. 12, no. 5, pp. 779–791, 2015. View at Publisher · View at Google Scholar
  101. X. Huang, M. Li, D. C. Green, D. S. Williams, A. J. Patil, and S. Mann, “Interfacial assembly of protein-polymer nano-conjugates into stimulus-responsive biomimetic protocells,” Nature Communications, vol. 4, article 2239, 2013. View at Publisher · View at Google Scholar · View at Scopus
  102. R. Yoshida, “Development of self-oscillating polymers and gels with autonomous function,” Polymer Journal, vol. 42, no. 10, pp. 777–789, 2010. View at Publisher · View at Google Scholar · View at Scopus
  103. D. Suzuki, T. Sakai, and R. Yoshida, “Self-flocculating/self-dispersing oscillation of microgels,” Angewandte Chemie, vol. 47, no. 5, pp. 917–920, 2008. View at Publisher · View at Google Scholar · View at Scopus
  104. Y. Sasaki and K. Akiyoshi, “Nanogel engineering for new nanobiomaterials: from chaperoning engineering to biomedical applications,” Chemical Record, vol. 10, no. 6, pp. 366–376, 2010. View at Publisher · View at Google Scholar · View at Scopus
  105. N. Morimoto, X.-P. Qiu, F. M. Winnik, and K. Akiyoshi, “Dual stimuli-responsive nanogels by self-assembly of polysaccharides lightly grafted with thiol-terminated poly(N-isopropylacrylamide) chains,” Macromolecules, vol. 41, no. 16, pp. 5985–5987, 2008. View at Publisher · View at Google Scholar · View at Scopus
  106. Y. Chen, X.-H. Pang, and C.-M. Dong, “Dual stimuli-responsive supramolecular polypeptidebased hydrogel and reverse micellar hydrogel mediated by host-guest chemistry,” Advanced Functional Materials, vol. 20, no. 4, pp. 579–586, 2010. View at Publisher · View at Google Scholar · View at Scopus
  107. M. Oishi and Y. Nagasaki, “Synthesis, characterization, and biomedical applications of core-shell-type stimuli-responsive nanogels—nanogel composed of poly[2-(N,N-diethylamino)ethyl methacrylate] core and PEG tethered chains,” Reactive and Functional Polymers, vol. 67, no. 11, pp. 1311–1329, 2007. View at Publisher · View at Google Scholar · View at Scopus
  108. B. G. De Geest, C. Déjugnat, G. B. Sukhorukov, K. Braeckmans, S. C. De Smedt, and J. Demeester, “Self-rupturing microcapsules,” Advanced Materials, vol. 17, no. 19, pp. 2357–2361, 2005. View at Publisher · View at Google Scholar · View at Scopus
  109. K. Raemdonck, B. Naeye, K. Buyens et al., “Biodegradable dextran nanogels for RNA interference: focusing on endosomal escape and intracellular siRNA delivery,” Advanced Functional Materials, vol. 19, no. 9, pp. 1406–1415, 2009. View at Publisher · View at Google Scholar · View at Scopus
  110. R. Agarwal, V. Singh, P. Jurney, L. Shi, S. V. Sreenivasan, and K. Roy, “Mammalian cells preferentially internalize hydrogel nanodiscs over nanorods and use shape-specific uptake mechanisms,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 43, pp. 17247–17252, 2013. View at Publisher · View at Google Scholar · View at Scopus
  111. P. Cao, X. Sun, Y. Liang et al., “Gene delivery by a cationic and thermosensitive nanogel promoted established tumor growth inhibition,” Nanomedicine, vol. 10, no. 10, pp. 1585–1597, 2015. View at Publisher · View at Google Scholar
  112. L. C. Glangchai, M. Caldorera-Moore, L. Shi, and K. Roy, “Nanoimprint lithography based fabrication of shape-specific, enzymatically-triggered smart nanoparticles,” Journal of Controlled Release, vol. 125, no. 3, pp. 263–272, 2008. View at Publisher · View at Google Scholar · View at Scopus
  113. J. A. Champion, Y. K. Katare, and S. Mitragotri, “Making polymeric micro- and nanoparticles of complex shapes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 29, pp. 11901–11904, 2007. View at Publisher · View at Google Scholar · View at Scopus
  114. M. Toyoda, S. Hama, Y. Ikeda, Y. Nagasaki, and K. Kogure, “Anti-cancer vaccination by transdermal delivery of antigen peptide-loaded nanogels via iontophoresis,” International Journal of Pharmaceutics, vol. 483, no. 1-2, pp. 110–114, 2015. View at Publisher · View at Google Scholar · View at Scopus
  115. Y. Fukuyama, Y. Yuki, Y. Katakai et al., “Nanogel-based pneumococcal surface protein A nasal vaccine induces microRNA-associated Th17 cell responses with neutralizing antibodies against Streptococcus pneumoniae in macaques,” Mucosal Immunology, vol. 8, no. 5, pp. 1144–1153, 2015. View at Publisher · View at Google Scholar
  116. Y. Qin, J. Chen, Y. Bi et al., “Near-infrared light remote-controlled intracellular anti-cancer drug delivery using thermo/pH sensitive nanovehicle,” Acta Biomaterialia, vol. 17, pp. 201–209, 2015. View at Publisher · View at Google Scholar · View at Scopus
  117. S. Lou, S. Gao, W. Wang et al., “Galactose-functionalized multi-responsive nanogels for hepatoma-targeted drug delivery,” Nanoscale, vol. 7, no. 7, pp. 3137–3146, 2015. View at Publisher · View at Google Scholar · View at Scopus
  118. J. K. Oh and J. M. Park, “Iron oxide-based superparamagnetic polymeric nanomaterials: design, preparation, and biomedical application,” Progress in Polymer Science, vol. 36, no. 1, pp. 168–189, 2011. View at Publisher · View at Google Scholar · View at Scopus
  119. S. Mornet, S. Vasseur, F. Grasset, and E. Duguet, “Magnetic nanoparticle design for medical diagnosis and therapy,” Journal of Materials Chemistry, vol. 14, no. 14, pp. 2161–2175, 2004. View at Publisher · View at Google Scholar · View at Scopus
  120. H. Ai, C. Flask, B. Weinberg et al., “Magnetite-loaded polymeric micelles as ultrasensitive magnetic-resonance probes,” Advanced Materials, vol. 17, no. 16, pp. 1949–1952, 2005. View at Publisher · View at Google Scholar · View at Scopus
  121. A. F. Thünemann, D. Schütt, L. Kaufner, U. Pison, and H. Möhwald, “Maghemite nanoparticles protectively coated with poly(ethylene imine) and poly(ethylene oxide)-block-poly(glutamic acid),” Langmuir, vol. 22, no. 5, pp. 2351–2357, 2006. View at Publisher · View at Google Scholar · View at Scopus
  122. S.-W. Chou, Y.-H. Shau, P.-C. Wu, Y.-S. Yang, D.-B. Shieh, and C.-C. Chen, “In vitro and in vivo studies of FePt nanoparticles for dual modal CT/MRI molecular imaging,” Journal of the American Chemical Society, vol. 132, no. 38, pp. 13270–13278, 2010. View at Publisher · View at Google Scholar · View at Scopus
  123. R. S. Ningthoujam, R. K. Vatsa, A. Kumar, and B. N. Pandey, “Functionalized magnetic nanoparticles: concepts, synthesis and application in cancer hyperthermia,” Functional Materials, pp. 229–260, 2012. View at Publisher · View at Google Scholar · View at Scopus
  124. T. E. Torres, A. G. Roca, M. P. Morales et al., “Magnetic properties and energy absorption of CoFe2O4 nanoparticles for magnetic hyperthermia,” Journal of Physics: Conference Series, vol. 200, no. 7, Article ID 072101, 2010. View at Publisher · View at Google Scholar · View at Scopus
  125. J. Dobson, “Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery,” Gene Therapy, vol. 13, no. 4, pp. 283–287, 2006. View at Publisher · View at Google Scholar · View at Scopus
  126. T. J. Yoon, J. S. Kim, B. G. Kim, K. N. Yu, M. H. Cho, and J. K. Lee, “Multifunctional nanoparticles possessing a ‘magnetic motor effect’ for drug or gene delivery,” Angewandte Chemie International Edition, vol. 117, no. 7, pp. 1092–1095, 2005. View at Publisher · View at Google Scholar
  127. F. Scherer, M. Anton, U. Schillinger et al., “Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo,” Gene Therapy, vol. 9, no. 2, pp. 102–109, 2002. View at Publisher · View at Google Scholar · View at Scopus
  128. S. C. McBain, H. H. P. Yiu, and J. Dobson, “Magnetic nanoparticles for gene and drug delivery,” International Journal of Nanomedicine, vol. 3, no. 2, pp. 169–180, 2008. View at Google Scholar · View at Scopus
  129. C. Plank, “Nanomedicine: silence the target,” Nature Nanotechnology, vol. 4, no. 9, pp. 544–545, 2009. View at Publisher · View at Google Scholar · View at Scopus
  130. B. Chertok, A. E. David, and V. C. Yang, “Polyethyleneimine-modified iron oxide nanoparticles for brain tumor drug delivery using magnetic targeting and intra-carotid administration,” Biomaterials, vol. 31, no. 24, pp. 6317–6324, 2010. View at Publisher · View at Google Scholar · View at Scopus
  131. N. Morishita, H. Nakagami, R. Morishita et al., “Magnetic nanoparticles with surface modification enhanced gene delivery of HVJ-E vector,” Biochemical and Biophysical Research Communications, vol. 334, no. 4, pp. 1121–1126, 2005. View at Publisher · View at Google Scholar · View at Scopus
  132. L. Li, F. Gao, W. Jiang et al., “Folic acid-conjugated superparamagnetic iron oxide nanoparticles for tumor-targeting MR imaging,” Drug Delivery, 2015. View at Publisher · View at Google Scholar
  133. B. Pan, D. Cui, Y. Sheng et al., “Dendrimer-modified magnetic nanoparticles enhance efficiency of gene delivery system,” Cancer Research, vol. 67, no. 17, pp. 8156–8163, 2007. View at Publisher · View at Google Scholar · View at Scopus
  134. B.-F. Pan, F. Gao, and H.-C. Gu, “Dendrimer modified magnetite nanoparticles for protein immobilization,” Journal of Colloid and Interface Science, vol. 284, no. 1, pp. 1–6, 2005. View at Publisher · View at Google Scholar · View at Scopus
  135. Y. Ge, Y. Zhang, S. He, F. Nie, G. Teng, and N. Gu, “Fluorescence modified chitosan-coated magnetic nanoparticles for high-efficient cellular imaging,” Nanoscale Research Letters, vol. 4, no. 4, pp. 287–295, 2009. View at Publisher · View at Google Scholar · View at Scopus
  136. L. Zhu, J. Ma, N. Jia, Y. Zhao, and H. Shen, “Chitosan-coated magnetic nanoparticles as carriers of 5-fluorouracil: preparation, characterization and cytotoxicity studies,” Colloids and Surfaces B: Biointerfaces, vol. 68, no. 1, pp. 1–6, 2009. View at Publisher · View at Google Scholar · View at Scopus
  137. A. J. Cole, A. E. David, J. Wang, C. J. Galbán, H. L. Hill, and V. C. Yang, “Polyethylene glycol modified, cross-linked starch-coated iron oxide nanoparticles for enhanced magnetic tumor targeting,” Biomaterials, vol. 32, no. 8, pp. 2183–2193, 2011. View at Publisher · View at Google Scholar · View at Scopus
  138. E. K. U. Larsen, T. Nielsen, T. Wittenborn et al., “Accumulation of magnetic iron oxide nanoparticles coated with variably sized polyethylene glycol in murine tumors,” Nanoscale, vol. 4, no. 7, pp. 2352–2361, 2012. View at Publisher · View at Google Scholar · View at Scopus
  139. G. Liu, R. Y. Hong, L. Guo, Y. G. Li, and H. Z. Li, “Preparation, characterization and MRI application of carboxymethyl dextran coated magnetic nanoparticles,” Applied Surface Science, vol. 257, no. 15, pp. 6711–6717, 2011. View at Publisher · View at Google Scholar · View at Scopus
  140. E. A. Osborne, T. M. Atkins, D. A. Gilbert, S. M. Kauzlarich, K. Liu, and A. Y. Louie, “Rapid microwave-assisted synthesis of dextran-coated iron oxide nanoparticles for magnetic resonance imaging,” Nanotechnology, vol. 23, no. 21, Article ID 215602, 2012. View at Publisher · View at Google Scholar · View at Scopus
  141. Y. Xia, W. Li, C. M. Cobley et al., “Gold nanocages: from synthesis to theranostic applications,” Accounts of Chemical Research, vol. 44, no. 10, pp. 914–924, 2011. View at Publisher · View at Google Scholar · View at Scopus
  142. I.-C. Sun, J. H. Na, S. Y. Jeong et al., “Biocompatible glycol chitosan-coated gold nanoparticles for tumor-targeting CT imaging,” Pharmaceutical Research, vol. 31, no. 6, pp. 1418–1425, 2014. View at Publisher · View at Google Scholar · View at Scopus
  143. C. K. Adokoh, S. Quan, M. Hitt, J. Darkwa, P. Kumar, and R. Narain, “Synthesis and evaluation of glycopolymeric decorated gold nanoparticles functionalized with gold-triphenyl phosphine as anti-cancer agents,” Biomacromolecules, vol. 15, no. 10, pp. 3802–3810, 2014. View at Publisher · View at Google Scholar · View at Scopus
  144. J.-G. Piao, L. Wang, F. Gao, Y.-Z. You, Y. Xiong, and L. Yang, “Erythrocyte membrane is an alternative coating to polyethylene glycol for prolonging the circulation lifetime of gold nanocages for photothermal therapy,” ACS Nano, vol. 8, no. 10, pp. 10414–10425, 2014. View at Publisher · View at Google Scholar · View at Scopus
  145. M. S. Yavuz, Y. Cheng, J. Chen et al., “Gold nanocages covered by smart polymers for controlled release with near-infrared light,” Nature Materials, vol. 8, no. 12, pp. 935–939, 2009. View at Publisher · View at Google Scholar · View at Scopus
  146. J. E. Kennedy, G. R. Ter Haar, and D. Cranston, “High intensity focused ultrasound: surgery of the future?” The British Journal of Radiology, vol. 76, no. 909, pp. 590–599, 2003. View at Google Scholar
  147. G. ter Haar and C. Coussios, “High intensity focused ultrasound: physical principles and devices,” International Journal of Hyperthermia, vol. 23, no. 2, pp. 89–104, 2007. View at Publisher · View at Google Scholar · View at Scopus
  148. W. Li, X. Cai, C. Kim et al., “Gold nanocages covered with thermally-responsive polymers for controlled release by high-intensity focused ultrasound,” Nanoscale, vol. 3, no. 4, pp. 1724–1730, 2011. View at Publisher · View at Google Scholar · View at Scopus
  149. Z. Lu, M. Meng, Y. Jiang, and J. Xie, “UV-assisted in situ synthesis of silver nanoparticles on silk fibers for antibacterial applications,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 447, pp. 1–7, 2014. View at Publisher · View at Google Scholar · View at Scopus
  150. B. Gutarowska and A. Michalski, “Microbial degradation of woven fabrics and protection against biodegradation,” in Woven Fabrics, H.-Y. Jeon, Ed., chapter 10, InTech, Rijeka, Croatia, 2012. View at Publisher · View at Google Scholar