Review Article

High Performance Electrocatalysts Based on Pt Nanoarchitecture for Fuel Cell Applications

Table 3

Summary of various Pt-based nanostructures with enhanced electrochemical properties in ORR.

Material/shapeSynthesis methodExperimental factor, A/, VReference

Pt-Pd/core-shellPolyolShell thickness0.180.895[83]
Pd-Pt/core-shellPolyolSeed-mediated growth~0.2~0.87[84]
Pt-Pd/hollow and dendritePolyolConcentration of reductant~0.76~0.92[85]
Pt-Co/truncated octahedronThermal-decompositionReaction time0.52~0.85[86]
Pt-Ni/truncated octahedronThermal-decompositionAlkane chain length of capping agent0.53~0.9[28]
Pt-Ni/icosahedronThermal-decompositionPresence of CO gas0.620.9[29]
Pt-Ni/octahedronThermal-decompositionElectrochemical activation~1.7~0.92[30]
Pt-Ni/octahedronThermal-decompositionReaction time1.45~0.92[87]
Pt-Co/cubeThermal-decompositionComposition ratio0.434~0.85[21]
Pt-Fe-Cu/rodThermal-decompositionElectrochemical etching0.557c[33]
Pt-Fe/wireThermal-decompositionComposition ratio0.840.92[88]
Pt-Fe-Pd/core-shell wireThermal-decompositionSeed-mediated growth~0.55c[89]
Pt/mesoporousElectrochemical depositionSilica template0.120.866[90]
PtCuCoNi/tubeElectrochemical depositionAAO template0.190.87[91]
Pt/porous dendriteReplacement reactionReplacement reaction0.21~0.93[92]

Specific mass current density at 0.9 V and bhalf-wave potential in ORR polarization curves based on V versus RHE. cHalf-wave potential (versus Ag/AgCl) in ORR polarization curves.