Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2015, Article ID 650625, 14 pages
Research Article

Densification and Devitrification of Fused Silica Induced by Ballistic Impact: A Computational Investigation

Department of Mechanical Engineering, Clemson University, Clemson, SC 29634, USA

Received 11 November 2014; Revised 12 March 2015; Accepted 25 March 2015

Academic Editor: Antonios Kelarakis

Copyright © 2015 Mica Grujicic et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


A molecular-level computational investigation is carried out to determine the dynamic response and material topology changes of fused silica subjected to ballistic impact by a hard projectile. The analysis was focused on the investigation of specific aspects of the dynamic response and of the topological changes such as the deformation of highly sheared and densified regions, and the conversion of amorphous fused silica to SiO2 crystalline polymorphs (in particular, α-quartz and stishovite). The topological changes in question were determined by carrying out a postprocessing atom-coordination procedure. This procedure suggested the formation of stishovite (and perhaps α-quartz) within fused silica during ballistic impact. To rationalize the findings obtained, the all-atom molecular-level computational analysis is complemented by a series of quantum-mechanics density functional theory (DFT) computations. The latter computations enable determination of the relative potential energies of the fused silica, α-quartz and stishovite, under ambient pressure (i.e., under their natural densities) as well as under imposed (as high as 50 GPa) pressures (i.e., under higher densities) and shear strains. In addition, the transition states associated with various fused-silica devitrification processes were identified. The results obtained are found to be in good agreement with their respective experimental counterparts.