Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2015, Article ID 790173, 29 pages
http://dx.doi.org/10.1155/2015/790173
Review Article

Recent Developments in Environmental Photocatalytic Degradation of Organic Pollutants: The Case of Titanium Dioxide Nanoparticles—A Review

1Department of Applied Chemistry, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
2Nanotechnology and Water Sustainable Unit, College of Science, Engineering and Technology, University of South Africa, Florida Campus, Johannesburg 17025, South Africa

Received 29 April 2015; Revised 29 July 2015; Accepted 5 August 2015

Academic Editor: Xin Zhang

Copyright © 2015 Mphilisi M. Mahlambi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The presence of both organic and inorganic pollutants in water due to industrial, agricultural, and domestic activities has led to the global need for the development of new, improved, and advanced but effective technologies to effectively address the challenges of water quality. It is therefore necessary to develop a technology which would completely remove contaminants from contaminated waters. TiO2 (titania) nanocatalysts have a proven potential to treat “difficult-to-remove” contaminants and thus are expected to play an important role in the remediation of environmental and pollution challenges. Titania nanoparticles are intended to be both supplementary and complementary to the present water-treatment technologies through the destruction or transformation of hazardous chemical wastes to innocuous end-products, that is, CO2 and H2O. This paper therefore explores and summarizes recent efforts in the area of titania nanoparticle synthesis, modifications, and application of titania nanoparticles for water treatment purposes.

1. Introduction

The South African National Water Act (Act number 36 of 1998) specifically states that water resources must remain fit for use on a sustainable basis and that their quality must be constantly monitored [1]. Therefore the availability of water should be based not only on the quantity but also on the quality of the available water [2]. However, due to agricultural, industrial, and domestic activities the quality of river water or groundwater continues to deteriorate due to pollution by hazardous materials [3, 4]. Water pollution is defined as the direct or indirect introduction of substances into the water bodies. These pollutants may be harmful to human health or the quality of aquatic ecosystems thus affecting the use of amenities and other legitimate uses of water [1].

The sources of water pollution are categorised as either a point source or nonpoint source (diffuse sources). Point source water pollution occurs when the polluting substance is emitted directly into the water system, for example, a pipe that spews sewage directly into a river, while nonpoint source (NPS) pollution refers to diffuse contamination which occurs when pollutants enter a water system through runoff, for example, when fertiliser is washed into a river by surface runoffs. Water pollutants can be classified as physical (odour, colour, solids, or temperature), biological (pathogens), or chemical (organic or inorganic compounds) [1, 2, 59]. Organic pollutants are of more concern than the other types because of their carcinogenic and mutagenic effects even after exposure to minute concentrations [10, 11].

1.1. Organic Pollutants

Organic contaminants have become of more concern due to the inability of conventional water-treatment technologies to completely decompose these contaminants in aqueous media [12, 13]. The ubiquitous appearance of organic contaminants in sewage effluents, groundwater, drinking water, and sludge poses a significant threat to humans and aquatic organisms [14]. Volatile organic compounds (VOCs) are known to be toxic and carcinogenic and have been implicated in the depletion of the stratospheric ozone layer while also contributing to global warming [10, 15]. These pollutants have been reported as being mutagenic and hence are responsible for the emergence of antibiotic resistance bacteria and genes [16].

Some organic pollutants are referred to as persistent organic pollutants (POPs) because when they enter the environment, they do not readily break down and may remain there for very long periods of time, for example, polychlorinated biphenyls (PCBs), and may enter the food chains and accumulate to levels detrimental to organisms that are high up in the food chain [17]. Also organic pollutants are a serious threat because they can be transported from the source of contamination through air as vapour or as dust particles by water currents or sediments and released in a new environment [17]. Some of these organic pollutants eventually contaminate groundwater and surface waters; however, groundwater contamination is likely to be the primary source of human contact with these toxic chemicals [18]. Generally, exposure to organic contaminants could be through breathing, through ingestion, through drinking, or by skin contact.

1.2. Natural Organic Matter

Natural organic matter (NOM) is an agglomeration of organic compounds that naturally occur when animal and plant material break down [1921]. NOM consists of a wide range of compounds with diverse chemical properties (due to geographic origin and age of the decomposing organism) and occurs in all natural water sources [20, 22, 23]. NOM components are a heterogeneous mixture of complex organic materials which consists of both hydrophilic and hydrophobic components. The hydrophilic components are microbial by-products and contain a higher proportion of aliphatic carbon and nitrogenous compounds with relatively high charge density such as amino acids and proteins as well as polysaccharides [22, 24, 25]. Humic substances (HS) constitute the more hydrophobic fraction of NOM and exhibit relatively high specific ultraviolet absorbance (SUVA) values due to the presence of a relatively large proportion of aromatic carbon, phenolic structures, and conjugated double bonds [5, 19, 21, 22, 24, 25].

Due to the complexity of NOM no single tool can give its definitive structural or functional information. Nondestructive spectroscopic techniques appear to be the most useful analytical techniques for NOM characterisation [20]. Treatment options for the removal of NOM include coagulation, the use of magnetic ion-exchange resins, activated carbon, membrane filtration, and advanced oxidation processes [22]. Characterisation of the structure and reactivity of NOM is vital because its presence creates problems in the quality of drinking water as well as in water-treatment processes [20, 26]. The presence of NOM results in an increased coagulant and disinfectant dosage resulting in increased sludge. It also increases biological growth in water-distribution networks and may also result in increased levels of heavy metal complexes and adsorbed organic pollutants [22]. Furthermore, the presence of NOM causes membrane fouling as well as aesthetic and malodour problems in water. The organic acids that result from the oxidation of NOM have the capability to corrode turbines and engineering systems and this affects transportation of contaminants [19, 22, 27, 28]. Thus, understanding the impact of NOM in water-treatment processes is vital for human health and water-treatment plants as well as industrial processes where pure water is a prerequisite.

1.3. Disinfection By-Products

In the water-treatment processes, NOM may have adverse effects since it may react with disinfectants (e.g., chlorine or chloramines) resulting in the formation of disinfection by-products (DBPs), many of which are either carcinogenic or mutagenic [5, 25, 26, 29]. For example, haloacetic acids (HAAs) are a component of DBPs that are considered harmful to human health. These have been found to result in impaired reproductive and developmental retardation when tested on laboratory animals [24, 3033]. Also, trihalomethanes (THMs) have been classified as possible carcinogens to humans [30, 32, 34, 35]. Nitrosamines are another group of DBPs, formed due to the reaction of NOM with disinfectants that have been reported to be a threat to human life due to its carcinogenicity [32, 3638].

1.4. Industrial Effluents

Industrial development is directly related to the release of various toxic pollutants into the environment, especially to aqueous streams, and these pollutants are harmful and hazardous to the environment [12, 3941]. Prevention of industrial pollution is currently a major focus of environmentalists and therefore treatment of industrial effluents before disposal into the ecosystem is imperative to protect human life and environmental quality [3, 40, 42]. Thus, a constant effort to protect water resources is being made by various government and nongovernmental organisations (e.g., US EPA, WHO, and DWAF) through the introduction of increasingly strict legislation covering pollutant release into the environment, with particular emphasis on liquid industrial effluents [5, 40, 43, 44]. There are major types of industries in the industrial complex, for example, pulp and paper mills, food, pharmaceutical, electroplating, textile, photographic, mining, and agriculture, to mention just a few, which do not generate uniform waste streams; industrial effluents are complex mixtures of chemical and biological compositions that have various environmental impacts depending on the source of the toxicant [45, 46].

1.4.1. Textile Industry Effluents

Textile-processing industries form the economic backbone of most developing countries. Effluents from textile industries are characterised by a variety of chemicals generated from the dyeing, bleaching, and washing processes [47, 48]. Wastewaters discharged from textile industries are a serious environmental threat due to their characteristic high colour, fluctuating pH, malodour, high biological oxygen demand (BOD) and chemical oxygen demand (COD), acids, and alkalis as well as various heavy metals that breach environmental standards [4850]. Dyes are soluble in water and even a small amount of dye is highly visible and reduces the transparency of water bodies [49, 51]. Also, dyes can be mutagens and carcinogens [49, 50], and thus they need to be removed from industrial effluents.

It is estimated that about 1% to 20% of the total world production of dyes is lost to the environment during synthesis and dyeing processes. These textile effluents are an environmental burden as they contain a large amount of azoic, anthraquinonic, and heteropolyaromatic dyes [6, 50]. The discharge of these highly pigmented synthetic dyes to the ecosystem causes aesthetic pollution, eutrophication, and perturbations in aquatic life as they hinder light penetration resulting in decreased photosynthesis [48, 49, 51]. Therefore textile wastewaters need to be treated to acceptable levels to meet the national discharge standard before being discharged to the environmental ecosystem.

1.4.2. Rhodamine B

Rhodamine B (Rh B) is a type of triphenylmethane dyes. Triphenylmethane (TPM) dyes are extensively used in textile, printing, food, photographic, and cosmetic industries [52]. TPM dyes can persist for long periods in the aquatic environment because they are resistant to chemical and biological (bacterial) attacks. Rh B is a common dye in the TPM family, which contains four (4) N-ethyl groups at either side of the xanthene rings (Table 1). It has achieved its prominent use due to its good stability as a laser material and is one of the major sources of pollution in the textile and photographic industry effluent streams [53]. Also, although Rhodamine B is a highly phosphorescent (fluorescent) dye, its toxicity is not dependent on the synergic effect of visible light [52, 54]. As a dye in the TPM family (i.e., azoic, anthraquinonic, and heteropolyaromatic dyes), the presence of Rh B in the ecosystem causes aesthetic pollution, eutrophication, and perturbations in aquatic life [6, 50, 52, 53].

Table 1: Molecular structure and chemical properties of Rhodamine B [6, 5254].
1.4.3. Other Industrial Effluents

Other sources of industrial pollution are from surface treatment (mechanical and chemical surface-finishing processes), thermal power stations, and agricultural activities, to name but a few. Effluents originating from surface-treatment processes contain both organic and metal pollution from the washing and rinsing of process baths [43]. Fly ash is the by-product of combustion in thermal power plants using coal and lignite and is mainly used as landfills [39]. However, studies to characterise leachate originating from these landfills have indicated that leachates contain hazardous pollutants like arsenides, PCBs, and sulfanilamides [14, 16, 55, 56]. Commonly used pesticides from agricultural activities (either domestic or large commercial scale) have high recalcitrant organic groups and hence are extremely difficult to break down through normal degradation [2, 38, 42, 57]. Also, the use of nitrogen-containing fertilisers causes acidification and eutrophication of ecosystems due to leaching [44, 58, 59]. These nitrogen-containing pollutants from agricultural activities are usually intermediates to the formation of refractory organic pollutants [44].

2. Refractory Organic Pollutants

Degradation of refractory organic pollutants is a challenge because these pollutants cannot be degraded using the current water-treatment technologies. They are resistant to aerobic microbial degradation in conventional biological treatment processes and the natural environment [44, 60, 61]. High-molecular-weight organics are the typical refractory pollutants. The presence of refractory pollutants in industrial wastewaters causes problems in the water-treatment system [46]. These pollutants cause biomass poisoning and die-off in conventional biological water-treatment systems. Other techniques such as flocculation, precipitation, or reverse osmosis require posttreatment to dispose of the pollutants while the use of chemical techniques either fails to adequately remove these organic pollutants or results in the formation of DBPs [28, 33, 36, 44, 62].

Current water-treatment technologies are designed to deal with either organic or inorganic pollutants in an aqueous medium, but not both. In addition, due to the diversity and varying chemical properties of organic pollutants these technologies fail to remove pollutants to the required levels. Furthermore, the presence of NOM in water-treatment processes may have adverse effects since it may react with disinfectants (e.g., chlorine or chloramines) and result in the formation of DBPs. Therefore the development of techniques that can remove both contaminants simultaneously without the production of DBPs would be ideal. Nanocatalysts have shown the ability to cost-effectively mineralise recalcitrant organic pollutants and reduce metal ions in aqueous media producing innocuous products, that is, H2O and CO2, and zero-valent metals, respectively. The approaches that we have undertaken in our laboratories in an attempt to address these problems are also described in this review.

3. Advanced Oxidation Processes (AOPs)

Due to the aforementioned limitations of the conventional water-treatment methods, there is an ongoing research interest to develop more efficient and environmentally friendly systems for the treatment of recalcitrant organic pollutants. Advanced oxidation processes (AOPs) have demonstrated the capability to develop such a green system. AOPs provide an effective remediation for the treatment of water since they have the ability to completely degrade a variety of organic pollutants, oxidise heavy metals, and destroy microbial substances. Advanced oxidation processes exploit the high reactivity of hydroxyl radicals as the oxidation driving force resulting in the formation of benign by-products (i.e., H2O and CO2); hence they are environmentally friendly [41, 6367].

3.1. Supercritical Water Oxidation

Supercritical water oxidation (SCWO) is a technique that has been proven to destroy highly persistent organic pollutants without the production of harmful products. SCWO reactions are carried out above the critical point of water (374°C and 22.1 MPa) and at this point the volume of water is three times higher than at room temperature, with a density of 0.322 g·mL−1 and a dielectric constant of 5.3 [6871]. A homogeneous single phase results when oxygen and organic compounds are dissolved in supercritical water [69, 71, 72]. SCWO has been studied in the degradation of nitrogenated compounds (e.g., pyridine, aniline, nitrobenzene, and ammonia), phenolic compounds, and radioactive wastes [70].

SCWO is regarded as an environmentally friendly process, because not only does it produce CO2 and H2O during oxidation, but also none of the and compounds are produced due to the relatively mild operating conditions (340°C to 400°C and 22.29 MPa to 25.33 MPa) [69, 71]. However, during the degradation of halogenated hydrocarbons, the SCWO process is subject to corrosion problems due to the formation of acidic conditions as well as fouling problems due to the utilisation of neutralising processes and these are the major obstacles that have led to the noncommercialisation of SCWO [71, 73].

3.2. Wet Oxidation

Wet oxidation, also referred to as wet air oxidation (WAO), is used to oxidise organic and inorganic substances, in either suspension or solution forms, in the presence of an oxidant (water or air) at elevated temperature and pressure [44, 61, 74]. WAO technology has a high potential for the treatment of effluents containing a high content of organic matter and/or hazardous materials for which biological treatment is not feasible [44]. In WAO technology the organic pollutants are either partially oxidised into biodegradable intermediate products with low molecular weights or completely mineralised to water, carbon dioxide, and innocuous end-products at temperatures ranging between 125°C and 320°C and at pressures of between 0.5 MPa and 20.0 MPa in the aqueous phase [44, 59]. The mechanism of wet oxidation seems to take place by means of a free radical. However, WAO is only effective for aliphatic and aromatic compounds that do not have halogenated groups. Moreover, investment and operation costs of WAO plants are not feasible due to excessive temperatures and pressures, while treatment of effluents containing refractory organic pollutants would further escalate the operating costs [75, 76].

3.3. Electrochemical Oxidation

Electrochemical oxidation processes employ an electrochemical cell to generate oxidising species which are used to destroy organic pollutants at ambient temperatures [60, 7779]. The mechanism of electrochemical oxidation involves three stages which are electrocoagulation, electroflotation, and electrooxidation [79]: Electrochemically, organic pollutants can be oxidised either directly or indirectly. In direct anodic oxidation, the pollutants are adsorbed on the anode before being destroyed by the oxidising species (mediator ions) produced at the anode while indirect electrochemical oxidation makes use of strong oxidising agents and the pollutants are oxidised in the bulk solution [7779]. Although electrochemical oxidation processes offer an environmentally friendly prospect, the process is economically not viable due to high energy consumption. Furthermore, fouling of the electrodes has been observed due to either the deposition of oligomers formed during phenol oxidation or radical combination as an effect of pH [60, 80].

3.4. Photolysis

In photolysis, a chemical compound absorbs radiation energy, is elevated to a state of higher energy and an excited state, and produces radicals that carry out the photochemical reactions. The source of radiation is either solar energy or low and medium-pressure mercury lamps [27, 33, 81, 82]. In photolysis, the hydroxyl compounds are generated by water splitting:These radicals then react with the organic pollutant, splitting it to smaller and more bioavailable compounds [27]. However, photolysis is a poor source of radicals and the radicals produced are not efficient enough to fully degrade refractory pollutants due to slow reaction kinetics observed in photolysis [8]. To accelerate these photochemical processes, metallic salts called semiconductors which act as catalysts to speed up the photochemical processes need to be added, giving rise to the so-called advanced oxidation processes [8, 8385].

4. Semiconductor Photocatalysis

4.1. Introduction

Interest in semiconductor photocatalysis has recently risen exponentially because of the potential and opportunities it offers in a variety of fields. These include treatment of environmental pollution, biotissue generation and biosensors, medicine (destruction of cancer and viruses), and pharmaceutical industries [7, 18, 8690]. The major advantages of semiconductor photocatalysis are that it offers a good substitute for the energy-intensive treatment methods and has the capacity to use renewable and pollution-free solar energy. Also, unlike the conventional treatment methods, which not only transfer pollutants from one medium to another but also transform those to more refractory pollutants, semiconductor photocatalysis converts contaminants to innocuous products, such as CO2 and H2O. Furthermore, the reaction conditions are mild, and the reaction time is modest and can be applied to aqueous, gaseous, and solid-phase treatments with the possibility of being both supplementary and complementary to the present technologies [8, 18, 52, 83, 87, 88]. Semiconductor photocatalysts therefore have the advantage of not only minimising running costs but also generating the desired product in the most efficient and effective way.

4.2. Properties of Semiconductor Photocatalysts

The defining property of a good semiconductor photocatalyst material is that the core element making up the material can reversibly change its valence state to accommodate a hole without decomposing the semiconductor (e.g., Ti3+ → Ti4+ in nonstoichiometric TiO2) [8, 18, 91]. The photogenerated holes should be highly oxidizing to produce hydroxyl radicals () and the photogenerated electrons should be reducing enough to produce superoxides from the oxygen [92]. Also, the element should have more than one stable valence in the semiconductor so that it is not decomposed (photocorrosion) by the formation of holes (e.g., Zn2+ in ZnO and Cd2+ in CdS are photocorroded by the formation of holes) [8, 18, 9395]. Furthermore, the semiconductor must have a suitable band gap, which is highly stable to chemical corrosion, nontoxic, and generally of low cost [8, 18, 92, 93, 96, 97]. The band gap energies of some semiconductor photocatalysts are shown in Table 2.

Table 2: Band gap energies of some semiconductor photocatalysts [8, 52, 89].

4.3. Mechanism of Photocatalysis

Semiconductor photocatalysts do not have a continuum of electronic states like metals, but they have a void region that extends from the top of the highest occupied molecular orbital (HOMO), that is, the valence band (VB), to the bottom of the lowest unoccupied molecular orbital (LUMO) which is also referred to as the conduction band (CB). This void region is called the band gap () [8, 18, 98100]. When the semiconductor is illuminated with light, it absorbs a photon () and when the energy of the photon is equal to or exceeds the band gap energy, an electron () is promoted from the VB to the CB leaving a hole () in the VB (Figure 1) [2, 18, 99101]. The electron-hole pair then migrates to the surface of the photocatalyst where it can recombine and dissipate the energy as heat, get trapped in metastable surface states, or react with electron donors or acceptors adsorbed on the surface of the semiconductor [18]. Generally, the hole oxidises water to form hydroxyl radicals and initiates a chain reaction that then proceeds to oxidise organics while the electron can be donated to an electron acceptor, for example, O2, leading to the formation of superoxides or a metal ion that is reduced to its lower valence state and deposited on the catalyst surface [8, 18, 98, 102, 103].

Figure 1: Mechanism for semiconductor photocatalysis [18].

The mechanism for semiconductor photocatalysis (of a M(IV) lattice metal, e.g., TiO2) can be summarised in the following reaction steps [8, 18]:(i)Excitation of photon greater than band gap resulting in the formation of electrons () and holes (), that is, charge-carrier generation:(ii)Charge-carrier trapping:(iii)Charge-carrier recombination producing thermal energy:(iv)Interfacial charge transfer:where Red is an electron donor (reductant) and Ox is an electron acceptor (oxidant).(v)Reduction of metal ions by , if present:This fundamental phenomenon observed in semiconductor photocatalysts to oxidise (degrade) organic compounds and reduce metal ions is a promising technique in the treatment of refractory organic pollutants and heavy metals present in wastewater treatment plants.

5. Nanophotocatalysts in Water Treatment

Due to industrial and geographical reasons there is always a difference in the quality of water across the world. It is therefore acceptable that there is no possibility of one solution that can solve all the problems of water contamination. Thus, in the design for water-treatment technologies, nanotechnology will always play a key role. The intrigue of nanotechnology is the ability to control the manipulation of nanoscale (approximately 1 nm to 100 nm) structured materials and integrate them into large material components, systems, and architecture that have novel properties and functions [2, 86, 113, 114]. The merits of using semiconductor photocatalysts in their nanorange far outweigh their use in their bulk form [115]. For example, in the case of adsorption where surface sites of the adsorbent are utilised, diffusion is usually hindered due to the lack of a porous structure in the bulk materials. This is because the surface-to-volume ratio increases drastically with the decrease of the adsorbent from bulk to nanodimensions [2, 7, 11, 87, 113].

Also, new physical and chemical properties emerge when the size of a material is reduced to the nanoscale level. The surface energy per nanoparticle increases significantly in the nanorange. This increase in surface energy directly results in an increase in contaminant removal even at low concentrations. The use of nanocatalysts also results in less waste generation, especially in posttreatment, since less quantity of nanomaterial will be required compared to its bulk form. Furthermore, with the use of nanomaterials, novel reactions can be accomplished at nanoscale due to an increase in the number of surface atoms which is not possible with its analogous bulk material, for example, the degradation of pesticides by nanoparticles which cannot be done by the metals in their bulk form [2, 7, 93, 94, 113].

6. Titanium Dioxide/TiO2/Titania Photocatalysts

6.1. Introduction

Among the nanophotocatalysts used in the treatment of environmental wastewater, titanium dioxide, also known as titania or TiO2, has been extensively studied [88, 116119]. Since the discovery of the phenomenon of photocatalytic splitting of water on a TiO2 electrode under UV light, enormous efforts devoted to titania research have led to promising applications in the fields of photovoltaics, photocatalysis, photoelectrochromics, ceramics, and sensors [120126]. As the most promising semiconductor photocatalyst, TiO2-based materials are therefore expected to play a major role to curb serious environmental and pollution challenges and ease the energy crisis through the use of renewable solar energy [93, 127134].

6.2. Synthetic Methods for TiO2 Nanoparticles

There are a number of available techniques for the synthesis of titania nanoparticles and these include sol-gel, sol, hydrothermal, solvothermal, and chemical vapour deposition, to name just a few [88, 135, 136]. These synthetic methods are highlighted in the following subsections. The method used plays a significant role in the shape, size, and photochemical properties of TiO2.

6.2.1. Sol-Gel Method

The sol-gel method is the most commonly used technique for the synthesis of TiO2 nanoparticles [137140]. In a typical sol-gel process, a colloidal suspension (a sol) is formed from the hydrolysis of the precursors, usually inorganic metal salts or metal inorganic salts such as metal alkoxides [16, 88]. For titania synthesis, the sol-gel process usually proceeds via an acid-catalysed hydrolysis of titanium (IV) alkoxides followed by condensation [88, 138]. The sol-gel process has found more extensive use in the synthesis of titania because the reaction takes place at low temperatures, does not use complicated equipment, results in the formation of highly homogeneous and pure products, and allows for modification to produce specific desired products [138, 141143].

Also, the sol-gel method results in the synthesis of high surface-area nanomaterials. It also allows for easy control of shape, size, and distribution, as well as the easy introduction of foreign materials into the catalyst lattice and at low temperatures [135, 141, 144147]. Moreover, nanomaterials prepared by this method have a well-crystalline phase and a small crystalline size, which benefit thermal stability and photocatalytic activity. Hence, in this study, the sol-gel process was used for the synthesis of TiO2 nanoparticles as well as the introduction of metal ions into the crystal lattice of the TiO2 nanoparticles.

6.2.2. Sol Method

This method is also referred to as the nonhydrolytic sol-gel process and usually involves the reaction of titanium chloride with oxygen donating materials, for example, metal alkoxides or organic ethers [88, 148152]. The reaction between Ti–Cl and Ti–OR leads to the formation of Ti–O–Ti bridges. The alkoxide groups are formed in situ by the reaction of titanium chloride with alcohols or ethers. The length of the alkyl substituent of the alcohols affects the reaction speed (the longer the chain, the faster the reaction) but not the average particle size. However, the variation of the halogen (e.g., TiF4 and TiI4) affects the average particle size [88, 153]. Also, the shape and size of the titania nanoparticles can be controlled by the addition of a surfactant. For example, TiCl3 was added to a solution of trioctylphosphine oxide (TOPO) and lauric acid and the reaction conditions controlled to produce either diamond-shaped, bullet-shaped nanocrystals or a mixture of branched and unbranched TiO2 nanorods [88, 153155].

6.2.3. Hydrothermal Method

Hydrothermal synthesis of nanoparticles takes place under controlled temperature and/or pressure in an autoclave [88, 127]. The reaction takes place in an aqueous medium. The hydrothermal process is effective for selective crystallisation of anatase titania from the amorphous phase. However, the presence of the Cl ion (from the precursor, TiCl3) results in the formation of a mixture of anatase and the brookite phases. Thermal treatment of the amorphous phase below 300°C results in a mixture of the anatase and the brookite phases due to a solid-state epitaxial growth mechanism. At temperatures above 300°C the formation of only the anatase phase is achieved because the dissolution/precipitation mechanism dominates [88, 127].

The hydrothermal process is thought to be environmentally friendly since the reactions are carried out in a closed system and the contents can be recovered and reused after cooling down to room temperature [53]. Moreover, proper and careful control of the hydrothermal processing conditions allows for the control over the physical properties of titania such as crystallite size and form, surface area, contamination, morphology and phase, uniform distribution and high-dispersion, and stronger interfacial adsorption properties [53, 88, 127].

6.2.4. Solvothermal Method

The solvothermal method is almost identical to the hydrothermal method except that it uses nonaqueous solvents [88, 156, 157]. However, in the solvothermal method the temperature can be elevated much higher than in the hydrothermal method and a variety of organic solvents with high boiling points can be used. With the solvothermal method there is a better control of the size, shape, and the crystallinity of the TiO2 nanoparticle distributions than hydrothermal methods [158]. Thus the solvothermal method has been found to be a versatile method for the synthesis of a variety of nanoparticles with controlled particle size, narrow size distribution, and dispersity [159162]. Also the versatility of this method is seen in that it can be employed to synthesise TiO2 nanoparticles and nanorods with or without the aid of surfactants.

6.2.5. Chemical Vapour Deposition (CVD) Method

Chemical vapour deposition (CVD) is a process in which materials in a vapour state are condensed to form a solid-phase material [88, 163]. This process alters the mechanical, electrical, thermal, optical, corrosion resistance, and wear-resistance properties of various substrates [163]. CVD has been used to form free-standing bodies, films, and fibres and to infiltrate fabric to form composite materials and, recently, in the fabrication of various nanomaterials [164, 165]. Chemical vapour deposition of titanium dioxide is usually carried out through the reaction of titanium tetrachloride (TiCl4) with oxygen or through the thermal reaction of a titanium alkoxide such as Ti(OPri)4, which already displays the Ti–O4 tetrahedral motif of the titanium dioxide lattice in its chemical structure [165167].

CVD processes usually take place within a vacuum chamber. If no chemical reaction occurs within the reaction chamber, the process is called physical vapour deposition (PVD). In CVD processes, the gaseous precursor compounds chemically react on a heated substrate surface and the deposition reaction is driven by thermal energy. The reactions usually happen in an inert atmosphere in the presence of a gas, for example, N2, Ar, or He [163165, 167]. Moreover, the reaction conditions in a CVD process can be tuned to determine the phase, size, and morphology of the TiO2 nanostructures.

6.3. Properties of TiO2 Nanoparticles

Titanium dioxide has gained prominence for use as an environmental remediation catalyst to completely mineralise organic and inorganic contaminants because of its outstanding characteristics. These include high thermal stability, high photocatalytic activity, high resistance to chemical and photocorrosion, nontoxicity, and dielectric properties as well as being inexpensive [168172]. The photocatalytic activity of TiO2 depends on its crystal phase, crystallinity, particle size, lattice impurities, density of surface hydroxyl groups, and the surface area. Titania has three (3) phases, namely, anatase (tetragonal), rutile (tetragonal), and brookite (orthorhombic), and the anatase phase of titania is the most photoreactive of the phases [121, 172174]. Of the three phases, the anatase phase has the smallest particle sizes (<50 nm), high concentrations of surface hydroxyl (OH) groups, and a high surface area, hence the high photocatalytic activity [169].

However, the band gap of anatase TiO2 is 3.2 eV and can only be activated under UV light irradiation with wavelength of 387 nm [117, 175177]. This high-energy band gap rules out the use of solar energy as the photoactivity source. The UV source requires large quantities of electrical energy which would result in high costs in practical applications [52]. Moreover, titania is characterised by low quantum yields (i.e., low electron transfer rate) resulting in high electron-hole pair recombination which results in the termination of the photocatalytic reactions [41, 104, 168, 178180]. As a result, a number of reformative initiatives have been investigated as a means of overcoming these drawbacks.

6.4. TiO2 Modifications

The main aim for titania modifications is to reduce the band gap of titania thus shifting its optical response to the visible-light region and to reduce the rate of electron-hole pair recombination to increase its photoreactivity [105, 132, 180]. TiO2 modifications result in the “decrease” of the band gap by means of introducing a donor level on the valence band (Figure 2). The paramount condition for titania modification is to ensure that the anatase phase is maintained. The most common techniques used for TiO2 modifications include anion doping, dye sensitizers, the use of binary oxides, and metal-ion doping. These are discussed in the following subsections.

Figure 2: Band gap (effect of doping) and photocatalysis mechanism of TiO2 [18, 104, 105].
6.4.1. Metal-Ion Doping

Doping of titanium dioxide nanoparticles with transition and noble metal ions for the degradation of organic pollutants is the most studied phenomenon and has been found to enhance both the photoresponse and photoresponse and photocatalytic activity of TiO2 nanoparticles under visible-light irradiation [47, 96, 105, 142, 181191]. The electronic states of titania can be decomposed into three parts: bonding of O p and Ti orbitals or states that are located in the lower region, bonding of O and Ti states in the middle energy region, and O states in the higher energy region (Figure 3). The bottom of the lower CB has the Ti orbital and contributes to the metal-metal interactions due to bonding of the Ti –Ti states. The top of the lower CB consists of the Ti states that are antibonding with the O states. The upper CB is characterised by the antibonding orbitals between the O and Ti states [88].

Figure 3: Bonding diagram of TiO2 [18].

During metal-ion doping, the energy due to the metal-ion dopant either lies at the top of the valence band or produces midgap states. When the atomic number of the dopants is increased, the localised level shifts to lower energy thus significantly contributing to the formation of the valence band with the O p and Ti 3d electrons. This results in the band gap narrowing due to the introduction of electron states into the band gap of TiO2 resulting in the formation of a new lowest unoccupied molecular orbital (LUMO) [88]. Basically, metal ions provide a “cushion” on the valence band (the donor level) which results in the “decrease” in the band gap.

Metal doping should be differentiated from metal ions codissolved in a photodegraded solution and noble metals deposited on the semiconductor surface [88, 105]. Metal ions (dopants) are therefore incorporated into the TiO2 lattice resulting in a “decrease” between the valence band and the conduction band hence altering the band gap energy thereby shifting the absorption band to the visible-light region [47]. Metal-ion dopants are nanoscale metal semiconductor contacts that act as electron scavengers hence resulting in increased photocatalysis [192, 193].

It is worth noting that although the introduction of metal-ion dopants on the titania lattice drastically shifts the absorption edge to the visible-light region, it can also result in reduced photocatalytic activities. Metal doping can increase the rate of electron-hole pair recombination and the photocatalyst can also cause thermal instability [57, 176]. It is therefore imperative to avoid this by taking into consideration the adequate amount of the dopant (metal) when preparing doped titania [105, 194]. This is because when the dopant level passes the optimal limit, which usually lies at a very low dopant concentration, the metal ions act as recombination centres resulting in reduced photoactivity. The presence of adequate amounts of metal doping (optimal limit) also ensures that the metal particles only act as electron traps hence aiding electron-hole separation [105, 195].

6.4.2. Anion Doping

Anion doping of titania has increased recently and has been reported to shift the absorption edge towards the visible-light region and increase the photocatalytic activity [16, 102, 119, 176, 196199]. The narrowing of the band gap is as a result of the mixing of either the p or the 2p states of the halogen (X) with the 2p states of the oxygen (O) atom in the valence band of the TiO2 nanoparticles [88, 196, 197]. However, the mixing of the p states of the halogen and the 2p states of the O atom has the most positive effect on the band gap narrowing as it induces some states which act as shallow donors on the valence band [88]. The anion therefore traps holes resulting in less recombination of the electron-hole pair and displaces the surface OH groups increasing the rate of electron scavenging by O2 resulting in the formation of an increased yield of superoxide radicals [103]. Anions therefore undergo innersphere ligand substitution reactions with surface hydroxyl groups.

6.4.3. Dye Sensitizers

Organic dyes have been widely employed as sensitizers for titanium dioxide nanomaterial to improve its optical properties as they are light absorbing chromophores [6, 84, 88, 125, 193, 200]. Organic dyes are usually transition-metal complexes with low-lying excited states, for example, polypyridine, phthalocyanine, and metalloporphyrin complexes. The metal centres for the dyes include Ru(II), Zn(II), Mg(II), Fe(II), and Al(III), while the ligands include nitrogen heterocycles with delocalised or aromatic ring systems. The conduction band usually acts as a mediator for transferring the electrons from the excited sensitizer to the substrate on the titania surface [84, 125, 187].

These organic dyes act as both sensitizers and substrates and are normally linked to the TiO2 nanoparticle surfaces via functional groups. The various interactions between the dyes and the TiO2 nanoparticle substrates include covalent attachment by directly linking groups of interest or via linking agents, electrostatic interactions via ion-exchange, ion-pairing, or donor-acceptor interactions, hydrogen bonding, van der Waals forces, or hydroxyl groups [84, 88, 95]. Most dyes of interest link via direct covalent bonding with the functional groups that are on the TiO2 surface. Carboxylic and phosphonic acid derivatives react with the hydroxyl groups to form esters, while amide linkages are obtained via the reaction of amine derivatives on TiO2 [88, 95]. However, dye sensitizers are not stable and are usually prone to thermal instabilities which result in increased recombination centres. Furthermore, they are susceptible to damage from reactive oxygen species (ROS) which destroy the catalyst [92, 176].

6.4.4. Binary Oxides

Binary metal oxides like TiO2/SiO2, TiO2/ZrO2, TiO2/WO3, TiO2/Fe2O3, TiO2/SnO2, TiO2/Ln2O3, and TiO2/RuO2 systems have been applied in the photocatalytic degradation of environmental pollutants under visible light [3, 95, 118, 124, 140, 201207]. The photoactivity of these binary oxides was found to be enhanced because the metal oxides increased the acidity of the titania surface. The surface acidity takes the form of surface hydroxyls and accepts holes generated by illumination of the catalyst and oxidises the adsorbed molecules [118, 204]. Basically, since the coupling oxide is activated under visible light, it is believed that the metal oxide will absorb visible light and the photocatalytic activity of the titanium dioxide will be used to mineralise organic pollutants. The metal oxides also enhance the separation properties of titania suspended particles from solution and thus decrease the effect of beam splitting by agglomerated particles [118]. Moreover, the metal oxides act as supports of the catalysts [10]. However, some of the metal oxides are thermodynamically unstable, for example, RuO2/TiO2, thus resulting in electron-hole pair recombination and significantly decreasing the photocatalytic activity [95].

Other techniques that have been used to shift the absorption edge of titania towards the visible-light region and reduce the rate of electron-hole pair recombination include carbon nanotube-titania composites, metal-anion codoping, mounting TiO2 on activated carbon exfoliated graphite, and polymeric substrates, for example, chitosan [116, 130, 208213]. For the purposes of this research metal-ion-doped titania will be synthesised and investigated for its photocatalytic properties under visible-light irradiation.

6.5. TiO2 Applications
6.5.1. Industrial Applications

The existing and potential applications of titanium dioxide nanomaterials include toothpaste, paint, UV protection, photovoltaics, photocatalysis, sensing, electrochromics, and photochromics. The photocatalytic properties of TiO2 have found application, as well as potential application, in the manufacture of self-cleaning surfaces, air cleaning devices, and self-sterilising devices [88, 92, 194, 214, 215]. Photochromic and electrochromic compounds (with a redox potential above the conduction band edge of titania) exhibit different colours in different oxidation states, and TiO2 acts as an electron conductor between the conduction band and the photo/electrochromic material. Electrochromic devices like electrochromic windows, displays, contact lenses, catheters, and spectacles with TiO2 as the electron conductors have been synthesised and commercialised [131, 216218]. Also, biomedically, TiO2 has shown much potential in cancer therapy (endoscopic-like instruments) due to its antitumor activity [92].

6.5.2. Environmental Applications

The photocatalytic properties of TiO2 make it an important semiconductor in applications in environmental remediation. Titanium dioxide has shown tremendous ability not only as a sensor for chemical, biological, and various gases (H2, , CO, etc.) even at low concentrations, but also to photocatalytically degrade and self-clean the contaminated environment [88, 200, 219222]. Moreover, the degradation of organic pollutants and reduction of metals to their zero oxidation states have been earmarked as one of the peak applications of TiO2 for the treatment of river water, groundwater, the drainage water from fish-feeding tanks, and industrial wastewater [57, 65, 91, 92, 117, 223, 224]. Furthermore, photodegradation of organic pollutants by titanium dioxide results in the formation of innocuous products and therefore eliminates the problems associated with the recalcitrant DBPs [18, 83, 174, 175, 225]. Although titania has the ability to completely degrade organic refractory pollutants and to be coused with the existing water-treatment technologies, its large-scale industrial application in drinking-water treatment is still considered to be miles away.

6.6. Problems Associated with TiO2 Applications

The use of TiO2 in suspension form is efficient due to its large surface area but there are four major technical challenges that restrict its large-scale application and its use in water-treatment technologies. Firstly, it has a relatively wide band gap (~3.2 eV, which falls in the UV range of the solar spectrum), and therefore it is unable to harness visible light thus ruling out sunlight as the energy source of its photoactivation [9, 16, 211, 226229]. Secondly, it has low quantum efficiency due to the low rate of electron transfer to oxygen resulting in a high recombination of the photogenerated electron-hole pairs [226, 227, 230]. Thirdly, when used in a suspension, titanium dioxide aggregates rapidly due to its small size (4 nm to 30 nm) and its aggregates may cause scattering of the light beam resulting in loss of catalytic efficiency [66, 211, 231]. And lastly, the application of powdered TiO2 catalysts requires posttreatment separation to recover the catalyst from water. This is normally difficult, is energy consuming, and is economically not viable for use in water-treatment plants [12, 66, 156, 211, 230]. Therefore new research initiatives need to be explored to counter these challenges.

One of the major challenges facing scientists and government bodies is the development of materials using “clean” energy applications, the so-called Green Science, to relieve the environmental burden due to pollution. TiO2 has the potential to be that green material and hence so much research has been ongoing to try and harness its potential applications. To achieve this, doping metals into the TiO2 lattice is an effective strategy to reduce the band gap and shift the absorption edge towards the visible-light range [57, 84, 105, 107, 191, 227, 232, 233]. However, the amount of the metal-ion dopant when preparing doped titania is important. This is because when the dopant level passes the optimal limit, (~0.4%), the metal ions then act as recombination centres resulting in reduced photoactivity [105, 194].

Also, TiO2 nanoparticles can be supported on catalyst supports. This would help improve the photocatalytic activity and potential application of the titania nanoparticles. Furthermore, to avoid the aggregation and posttreatment challenges, TiO2 can also be assembled onto different substrates and fabricated into different types of titania thin films [150, 211, 214, 234237]. The advantage of using thin films is that they are known to be chemically stable and possess a high dielectric constant, a high refractive index, and excellent transmittance; therefore they have the ability to retain the photocatalytic activity of the assembled catalysts [236].

7. Catalyst Supports

7.1. Introduction

A support material is very important in catalysis because it determines the catalytic activity of a catalyst [238, 239]. Catalyst supports are porous and have high surface areas [44, 240, 241]. The electronic interactions between the support and the catalyst bring about slightly acidic conditions which increases the rate of electron transfer thus reducing the rate of electron-hole combination. Also, supports result in an increased adsorption ability and stability of the catalyst and hence increase the rate of oxidation of organic pollutants [44, 76, 242, 243]. Moreover, catalyst support materials do not only shift the band edge towards the visible-light energy region but also have the ability to disperse the supported catalysts thus preventing them from agglomerating and also helping to improve catalyst separation from posttreatment wastes [130, 238, 243247]. These conditions are therefore important since they enhance the photocatalytic activity and the application of the supported TiO2 catalysts. The common types of supports used for catalysts include alumina (γ-Al2O3) supports, carbon supports, and carbon-covered alumina (CCA) supports.

7.1.1. Alumina Supports

γ-Alumina as a catalyst support has a high surface area, good mechanical properties, and numerous pores as well as the ability to disperse the active metal phase [238, 239, 247, 248]. However, its exclusive use as a support has been found to have some disadvantages. For example, its acidity results in low catalytic activity of the supported catalysts. Furthermore, its reactive surfaces form unwanted metal oxides upon calcination. The reactive surfaces of alumina react with the promoter ions resulting in the formation of oxides which lower the catalytic activity of the catalysts [238, 247249]. The strong interactions of the alumina support with the metal atoms are therefore undesirable since it is detrimental to the catalyst activity.

7.1.2. Carbon Supports

Carbon has also been used to support catalysts. Carbon supports have mild interactions with the supported metals and have a neutral surface, good thermal conductivity, and high surface area with controlled pore volume. Carbon is also resistant to nitrogen poisoning and contains variable surface functional groups [246, 248251]. However, it also has some undesirable properties that limit its use as a catalyst support. It has poor mechanical properties and a low surface area. Moreover, it is also microporous and has poor adsorption properties and hence catalysts may be deposited on the micropores thus making their photocatalytic effect trivial [238, 246, 248251]. These properties therefore make the sole use of carbon as a support material inapplicable.

7.2. Carbon-Covered Alumina (CCA) Supports

As described before, the sole use of either carbon or alumina as support materials has some shortcomings. A support system that exploits the merits of both carbon and alumina can provide an ideal support system. This is because it overcomes their shortcomings while improving their advantages. In this system, the alumina is coated with a thin layer of carbon prior to catalyst impregnation which results in a support material that possesses both the textural and mechanical properties of alumina and the favourable surface properties of carbon [238, 250, 252255]. The properties of this carbon-covered alumina (CCA) support include reduction of the alumina acidity (~ by 90%) due to the presence of carbon; increased electron-charge transfer and reduced metal-support interactions resulting in increased catalytic activity; and increased mechanical strength and increased surface area [238, 239, 247, 252254, 256, 257]. CCA supports are therefore superior catalyst supports due to the integration of the properties of both the carbon and alumina.

7.3. Synthesis of CCA Supports

The most common approach to the synthesis of CCA supports is based on the “pyrolyzability” of organic compounds, such as cyclohexene, acetylene, or ethane, on the surface of alumina at elevated temperatures (600°C to 700°C) in the flow of nitrogen, that is, chemical vapour deposition (CVD) of organic compounds [247, 249, 254, 258260]. However, it has been found that the materials synthesised by this method have some drawbacks. For example, their textural properties are dependent on the amount of carbon deposited and the type of the hydrocarbon used; hence the carbon coating is nonuniform [254]. Furthermore, increasing the degree of surface coverage of the alumina by carbon through CVD results in the aggregation of carbon on the alumina surface and this decreases the apparent surface area and pore volume which are key to catalytic activity of the supported catalysts.

Another method used to synthesise CCA involves the impregnation of alumina with sucrose solutions [198, 238, 250, 253, 257]. In this method the sucrose-impregnated alumina is dried in an oven and the pyrolysis of the sucrose takes place in an inert atmosphere at elevated temperatures (600°C to 700°C) to produce CCA supports. The CCA supports produced by the impregnation of sucrose have a uniform carbon layer; hence this is regarded as a better method than CVD of organic compounds. Lately, Sharanda et al. have synthesised CCA supports using an adsorption-equilibrium method [254, 261]. In this method highly reactive compounds like acetylacetone and isocyanates form surface complexes with the OH groups of the alumina via the C=O and N=C=O bond openings, respectively. Upon pyrolysis, a carbon coating is expected to form on the surface of the alumina. The equilibrium adsorption method has the advantage of forming better CCA supports since the interaction between the C and alumina is a chemical process and not a physical or mechanical one like in the case of CVD and sucrose impregnation. Hence, for the purposes of this study, the adsorption-equilibrium method was adopted for the synthesis of CCA supports.

7.4. Applications of CCA Supports

CCA supports have found utilisation as supports for hydrotreating catalysts in the Fischer-Tropsch conversion of heavy crude oil into light fractions [252, 258]. Also, CCA supports have a high surface area and high adsorption affinity for both organic and inorganic compounds (Al2O3 is a polar adsorbent and C is a nonpolar adsorbent). These properties have been exploited and CCA supports have been used as packing material for high-performance chromatography [249, 260, 261]. Recently, Jana and Ganesan [255] have synthesised CCA in the form of foams and increased its surface area and also enhanced its adsorptive properties. Due to their high catalytic activity and stability, CCA supports have been used to support Ru catalysts in the synthesis of NH3 [262]. Ag nanoparticles have been used in CCA supports and used to remove bacteria in drinking water [239]. Since not much work has been done on the environmental application of CCA-supported catalysts, this research therefore seeks, for the first time, to support anatase TiO2 nanoparticles on CCA supports and apply them in the degradation of organic pollutants.

8. CCA-Supported TiO2 Nanoparticles

Titania nanoparticles have been recently attached on CCA supports and used for the photocatalytic degradation of Rhodamine B under visible-light irradiation [263]. Metal-doped titania has also been supported on these CCA supports. Ag, Co, Ni, and Pd were used as the metal dopants [106]. The CCA supports were synthesised from glucose and an impregnation method was used to attach the nanoparticles on the supports. According to the results obtained, attaching the titania nanoparticles on the CCA supports greatly enhanced their photocatalytic activity. Both these CCA/TiO2 and CCA/m-TiO2 nanoparticles had a large surface area due to the porous nature of the CCA supports, and they were highly active under visible-light irradiation and exhibited less electron-hole combination due to the presence of C (which acts as electron traps) on the supports. Also, the band gap of the CCA-supported titania nanoparticles was highly reduced. The decrease in the band gap of the CCA-supported catalysts was found to be much higher than the decrease of 0.14 eV which is usually observed for carbon doped titania. The SEM images (Figure 4) revealed that the carbon formed a layer on top of the alumina and that the nanoparticles were successfully impregnated on the highly porous CCA supports.

Figure 4: SEM images of CCA and CCA/TiO2 nanoparticles [106].

Figure 5 showed that the catalysts were successfully impregnated onto the CCA supports. The authors also revealed that the catalysts were evenly distributed on the CCA supports. Uniform distribution is a distinguishing feature of CCA supports due to their high adsorption and porous nature. The CCA-supported catalysts were found not to have lost their crystallinity which would have inversely affected the photocatalytic activity of the catalysts.

Figure 5: TEM images of the CCA-supported titania nanocatalysts [106].

9. Thin Films

As mentioned earlier, the tendency of titanium dioxide nanoparticles to aggregate and scatter incident light as well as the need for posttreatment recovery has made its large-scale application economically impractical [91, 211, 264]. This had led to the exploration of a number of techniques to try and immobilise TiO2 nanoparticles on solid supports not only to solve posttreatment problems but also to facilitate the renewable use of the catalyst [66]. Also, TiO2 thin films retain the photocatalytic properties of its powder form. TIO2 thin films can still be applicable in gas sensors, electrodes for solar cells, electrochromic applications, as gate oxides of metal-oxide-semiconductor field transitions, laser applications, and photocatalytic degradation of pollutants [150, 264267].

Although immobilised titania is less photocatalytically active than suspended titania particles due to reduced surface area and less porosity, the merits of using immobilised titania still far outweigh the disadvantages as it provides new avenues in the practical utilisation of titania. The techniques used for synthesis of TiO2 thin films include CVD, dip coating, sol-gel, spin coating, spray pyrolysis, sputtering, liquid-phase deposition, and layer-by-layer (LbL) self-assembly. The substrates used include glass, single-crystal silicon, or polymeric substrates. Some of these thin-film synthesis techniques are discussed in the following subsections.

9.1. Chemical Vapour Deposition

Chemical vapour deposition (CVD) is a versatile method that can be used for the synthesis of a number of materials. To synthesise TiO2 thin films by CVD, either a titanium alkoxide such as titanium isopropoxide (TTIP) is used, which already has the Ti–O4 tetrahedral motif of the TiO2 in its chemical structure, or TiCl4 is reacted with oxygen to form the T–O4 tetrahedral motif. These are thereafter deposited on a substrate at elevated temperatures in a vacuum to form the titania thin films [165, 236, 268, 269]. CVD offers good control of film structure and composition, excellent uniformity even on highly irregular substrates (conformal deposition), and a sufficiently high growth rate thus applicable for synthesis of multilayer structures [268, 270272]. To realise the desired physicochemical properties of a material, a suitable substrate surface must be exposed to a suitable growth environment (temperature, pressure, and chemical composition) especially in the gas phase conditions close to the substrate surface [270].

The factors that affect the physicochemical properties of the thin films are the choice of precursors, carrier gas, and their respective flow rates, the total pressure in the reactor, the substrate temperature, the distance between the substrate and the nozzle head, and the water-vapour content in the whole reaction chamber [270, 273]. However, CVD is not a straightforward process and is complicated to control. The deposition rates, uniformity, and film properties change when one inert gas is replaced by another, a different-sized substrate is used, a different reactor loading is applied, or an identical process is applied in a different reactor setup [270]. Moreover, the vacuum equipment is expensive and due to the complicated nature of the reaction kinetics in the CVD reactors CVD processes developed in the laboratory are difficult to scale up to industrial scales [166, 235, 270].

9.2. Liquid-Phase Deposition

Liquid-phase deposition (LPD), unlike CVD, is referred to as a unique soft process in which a metal oxide or hydroxide forms thin films through ligand-exchange (hydrolysis) equilibrium deposition at low temperatures [232, 274]. The substrate is immersed in the precursor solution (soft-solution deposition) and thereafter the substrate is calcined at high temperatures to obtain crystalline thin films [232, 275]. LPD is a cost-effective method, is regarded as environmentally friendly, and produces smooth, uniform, and dense thin films with good adherence [235, 275]. However, the thermal treatment of the thin films has been reported to affect the adhesion properties of the nanoparticles on the substrate [235].

9.3. Dip Coating

In dip coating the substrate is slowly immersed in a titanium dioxide precursor solution, for example, TTIP, TiCl4, or TiCl3 and then slowly pulled out at a fixed rate. The coated substrate is then immediately dried in furnace before calcination at elevated temperatures (400°C to 500°C) [65, 276278]. Sometimes a complexing agent and a wetting additive are added to stabilise the solution and enhance film adherence [279]. Dip coating is also regarded as a simple, cost-effective technique and it produces uniform coatings with controllable film thickness [277, 280]. However, just like in LPD, the thermal treatment of the thin films affects the adhesion properties of the nanoparticles on the substrate [235].

9.4. Spray Pyrolysis

Spray pyrolysis (SP) is a simple technique that requires a precursor solution (e.g., TiCl3, TiCl4, Ti(OEt)4, or TTIP dissolved in water, ethanol, or other solvents), an atomiser, and a heated substrate [156, 281]. In an SP process the solution is atomised into small droplets and the droplets are transported by a gas to the heated substrate where they form thin films upon immediate approach or impingement on the substrate (Figure 6). The source of the atomic mist (aerosol which produces large droplets or ultrasonic spraying which produces smaller droplets) determines the surface morphology of the deposited films [281283]. The SP method is attractive because it is inexpensive and uses simple facilities, results in rapid film growth, large surface-area substrate coverage, and homogeneity, and has the potential for mass production [156, 283286].

Figure 6: Schematic representation of the spray pyrolysis method [107].

However, SP has some drawbacks. Poor film quality is observed due to vapour convection in the hot zone because the vapour formed on the heated substrate may hinder the source vapour from attaching to the substrate due to the temperature difference. Also, as the source liquid vaporises on the substrate due to thermal decomposition it may result in the formation of thin films with many cracks due to precipitate shrinkage [284]. Also, SP can result in the deposition of powder on the substrate.

9.5. Sol-Gel Technique

The sol-gel technique is the most widely used method for the synthesis of TiO2 thin films. The solution precursors are used to make the sol, and the substrate is immersed in the sol and substrate gelation occurs. These substrates are then aged and calcined at elevated temperatures to produce the thin films [185, 287]. The sol-gel method has been widely used in the synthesis of titania thin films because it is a simple and cost-effective method that results in the formation of high porosity, low density and low refractive index, high nanoparticle homogeneity, tunable particle size, and high substrate coating [185, 227, 234, 288290]. The pH of the sol, the ageing time, amount of surfactant template, amount of hydrolysis retardant, and calcination temperature play an important role in the quality of the thin films produced [288]. However, the sol-gel method has some drawbacks. For example, during the ageing of gels and drying of films, the sols produce vapours which cause environmental pollution [287]. Also, the thermal treatment of the thin films affects the adhesion properties of the nanoparticles on the substrate [235].

9.6. Layer-by-Layer (LbL) Self-Assembly
9.6.1. Introduction

The layer-by-layer (LbL) self-assembly technique is a technology that enables the nanoconstruction of multifunctional films on solvent-accessible surfaces. It also allows for the design of functional surfaces and surface-based nanodevices in a “build-to-order” fashion, that is, the capacity to build standard or mass-customised products upon receipt of spontaneous orders without forecasts [109]. Furthermore, the LbL technique exceeds simple self-organisation under equilibrium conditions by making it possible to arrange many different materials at will with nanoscale precision [12, 109, 291294]. The LbL technique can thus provide solutions for surface modifications and fabrication of thin films; that is, it permits multifunctional assemblies of materials since it allows deposition on surfaces of almost any shape and kind [109, 295].

9.6.2. Fabrication of LbL Thin Films

Sequential deposition of polyelectrolytes (polyanions and polycations) on solid surfaces leads to the build-up of multilayer LbL thin films [108, 296, 297]. The LbL self-assembly technique is a physisorption process independent of size and topology of the substrate; however, parameters like solution concentration, ionic strength, solvent composition, and temperature play an important role in the multilayer build-up [292, 295, 298]. Examples of polyelectrolytes used for LbL thin-film fabrication are shown in Figure 7.

Figure 7: Examples of polyelectrolytes used in LbL thin-film synthesis.

To synthesise LbL thin films, a substrate is either dipped in or sprayed with oppositely charged polyelectrolytes. Also, solutions can be allowed to flow over the substrate. During spraying (Figure 8) the electrolyte sprayed on the substrate should not accumulate on the surface but flow away quickly, driven by gravity, and only a thin film of liquid which typically dries within minutes should initially remain on the surface. Because the thickness of the adhering solution is very thin, any spray droplet arriving at the surface immediately fuses with the liquid film and will replace liquid draining off. Spray coating is a fast and convenient application for large surface areas. Thus, this setup provides for mild but permanent agitation as driven by the draining solution [108].

Figure 8: Schematic of the LbL electrolyte spraying deposition process [108].

During the dipping method (Figure 9), the substrate is dipped alternately in oppositely charged polyelectrolytes. Each dipping step is followed by a rinsing step to remove excess polyelectrolyte in contact with the surface. The washing is important because it avoids the formation of polyelectrolyte clusters in solution and hence it ensures homogeneity and uniformity of LbL films. Also, the dipping method forms thicker films than the spraying method [108, 109]. Thus for the purposes of this study the dipping deposition process was preferred.

Figure 9: Schematic of the LbL electrolyte dipping deposition process [109].
9.6.3. Applications of LbL Thin Films

There are a number of unprecedented “reagents” or materials for LbL film deposition and these include polymers (linear or branched), colloids (polymeric, metallic, or oxidic), biomacromolecules (DNA/proteins, polynucleotides, bioaggregates, and contact lenses), and nanoparticles (for environmental application) [293, 296, 297, 299]. Due to the variety of materials used for LbL thin-film fabrication, its application is therefore spread across a variety of disciplines which include electric and electronic devices (rectifiers, transistors, and switches), film coating, micropatterning, nanobioreactors, photocatalysis, and drug-delivery systems [300302]. Biomedically, thin-film coating on medical devices can improve biocompatibility, reduce immunological response, and enhance targeted drug delivery [294]. The LbL self-assembly technique has also been applied in the synthesis of thin-film microcapsules that disintegrate on the target site hence improving drug or DNA delivery to their active site [298, 299, 303307]. Also, LbL thin films have been applied to assemble semiconductor catalysts (especially TiO2) and applied in the degradation of organic pollutants for environmental remediation [12, 293, 308]. LbL self-assembly of TiO2 on thin films can therefore go a long way to overcome the problems associated with the practical application of suspended TiO2 nanoparticles.

9.7. Layer-by-Layer TiO2 Thin Films

The use of titania in powder form has the tendency to aggregate and scatter incident light and there are difficulties associated with the recovery of powdered titania after treatment; hence its large-scale application is economically not viable. TiO2 has been assembled on substrates using different methods and applied in catalytic environmental remediation processes. However, since the other TiO2 thin-film fabrication methods have some drawbacks like film cracking, poor adhesion to substrate, the use of high temperatures, expensive equipment, and a high level of expertise required, the LbL self-assembly provides a better alternative. LbL thin films are synthesised at low temperature (room temperature), simple equipment is used, the films require no thermal treatment, and strong adhesion between nanoparticles, electrolyte, and substrate is ensured due to the strong electrostatic interactions [12].

The TiO2 nanoparticles assembled by the LbL self-assembly technique were found to be well separated and highly accessible for the photocatalytic processes. Also, the amount of the nanoparticles deposited was easily controllable [12, 293]. When compared to other methods like drop-casting and spin-coating, the LbL assembled TiO2 show superiority in terms of film stability and catalyst reusability (thin film can be used a number of times with the same efficiency). Also, the LbL method has no limit to the number of TiO2 layers that can be assembled and the higher the number of the layers the more the catalytic activity [12]. The use of LbL synthesised thin films therefore overcomes the problems associated with the use of powdered TiO2 as well as the other thin-film assembly techniques and is attractive for practical application in continuous water-treatment and environmental remediation processes. However, little have been reported in recent literature on the assembly and use of metal-doped titania by the LbL method.

10. Metal-Ion-Doped TiO2 LbL Thin Films

The immobilization of metal-ion-doped titania on glass slides by the LbL method has been reported recently [110]. This study reveals that the metal-ion-doped titanium dioxide nanoparticles were successfully attached on glass slides and there was an increase in the number of particles and thin-film thickness with increase in the number of bilayers (Figure 10). PAH and PSS electrolytes were used to immobilise these m-TiO2 nanoparticles on the glass slides as thin films. The photocatalytic efficiency of the PAH (PSS/mTiO2) thin films was studied using Rhodamine B under visible-light illumination. These thin films were highly active towards the photocatalytic degradation of Rhodamine B under visible-light illumination and did not lose their photocatalytic activity and strength even after five cycles. This study shows a great stride in the use of metal-doped titania nanoparticles as it eliminates the problems associated with aggregation and posttreatment and thus increases the chances for easy use in water treatment.

Figure 10: SEM images of 1, 3, 5, and 10 bilayers of the m-TiO2 nanoparticles thin films [110].

11. Titania Mixed-Matrix Membranes

Recently, membrane separation technologies have been found to be cheap and fast, chemically stable, and highly selective. They can also be easily integrated with other water-treatment strategies [309311]. Because of these properties, they have been found more favourable to be used for water-treatment processes. Membrane techniques do not require addition of chemical substances and therefore it is easy to increase their capacity (modular system). The separation process is in a continuous mode and therefore applicable in mild environmental conditions [312]. Membrane processes can therefore be used in diverse industrial sectors such as pharmaceutical, water treatment, chemical, food processing, electronics (fuel cells), metallurgy, and biotechnology [311, 313317].

Although using polymeric membranes has major benefits over the conventional water-treatment technologies, their susceptibility to fouling is a major drawback [309, 318]. Foulants may be either crystalline, particulate, thermal, colloidal, microbial (biofouling), or organic fouling [309, 314, 318]. Polysulfone (PS) has been widely used to synthesise membranes. PS membranes are relatively cheap, have a superior film-forming ability, strong thermal and chemical stability, and acidic and alkaline resistance, and hence have been widely used in many applications [318, 319]. These membranes have good mechanical and anticompaction properties. However, like any other membranes, PS membranes have limitations to be used in water-treatment processes because they easily get fouled, have a low permeate flux, and are hydrophobic in nature [310, 311, 320], hence the need to modify their properties.

Current research in membrane technology development is focussed on the improvement of antifouling and hydrophilicity properties while maintaining or improving their throughput characteristics [310, 311, 319, 321]. This can be attained by either bulk or surface modification which changes the chemical structure of the membranes. Also, inorganic nanoparticles can be incorporated through the membrane matrix or on the surface [309]. Although this phenomenon is still under debate, it is widely accepted that the thermodynamic state and kinetic properties of the system and how they vary during processing govern the structure formation pathway of the membrane. Also, physical parameters like the temperature, the composition of the casting solution, the composition of the nonsolvent bath, and the surrounding atmosphere play a pivotal role in determining the synthetic pathway as well as the final membrane structure [322, 323]. Incorporating inorganic nanomaterials into polymeric membranes has been found to improve the chemical stability, the thermal stability, the permeation, and the mechanical as well as the antifouling resistance of membranes [313, 318, 321, 324]. For such purposes, nanoparticles like TiO2, Al2O3, ZrO2, Cu, Ag, and SiO2 have been utilised in the past [309, 311, 318, 325].

Recently CCA-supported free TiO2 (CCA/TiO2/PSf) and Pd-doped titania (CCA/Pd-TiO2/PSf) nanoparticles have been embedded within a polysulfone matrix to synthesise mixed matrix membranes [111, 112]. In these studies, both the CCA/TiO2/PSf and the (CCA/TiO2/PSf) membranes were found to be highly photoactive for the discolouration of Rhodamine B under visible-light irradiation. The CCA-supported nanoparticles were distributed both within and on the surface of the membranes (Figure 11). These studies revealed that only a minimal amount of the nanoparticles can be incorporated within the polymer matrix without compromising the mechanical properties. Increasing the amount of the nanoparticles to about 0.5% resulted in weakening of the mechanical properties of the nanoparticles. The presence of the nanoparticles also enhanced the permeate flux as well as the fouling behaviour of the PSf membranes. This is thus a great step that eliminates not only the problems associated with posttreatment and aggregation but also fouling of the membranes and thus provides a better alternative in finding means to deal with water-treatment problems.

Figure 11: SEM micrographs of the CCA/TiO2 mixed matrix membranes: (a) surface morphology, (b) cross section, and (c) nanoparticles within the polymer matrix [111, 112].

12. Conclusion

From the literature discussed, the health risks associated with the presence of pollutants in water due to the failure of conventional water-treatment technologies to effectively remove organic and inorganic pollutants have been highlighted. It has been revealed that TiO2 nanoparticles have demonstrated the ability to completely degrade organic pollutants in an aqueous medium resulting in the formation of innocuous products and thus have tremendous potential to be used in water-treatment processes. Reformative processes to shift the absorption edge of titania to the visible-light region have been discussed. Supporting the TiO2 on CCA supports has proven to drastically enhance the dispersion of the nanoparticles, reduce electron-hole pair recombination, and increase the surface area resulting in an increased photocatalytic activity. Also, CCA supports were found to play a major role in shifting the absorption edge of titania towards visible-light irradiation. Also, the LbL self-assembly of the metal-ion-doped TiO2 on glass substrates overcame the problems associated with the need for the application of costly posttreatment processes needed when using suspended TiO2. The embedding of the titania nanoparticles within the a polymer matrix has proved to be the recent pivotal advancement in the application of titania nanoparticles for environmental remediation processes.

Overall, this review brings to attention the advancements of titania nanoparticles in their use for water-treatment processes. These advancements thus serve as techniques that can be used in conjunction with the present water-treatment technologies to alleviate the problems associated with pollutants in drinking water systems. Also, since titania can degrade organic pollutants while simultaneously oxidising heavy metal species, it serves as a cheap dual process that can be further explored to realize the potential of TiO2 in water-treatment processes. Furthermore, titania provides a cheaper alternative that can be used in conjunction with the already existing water-treatment technologies, especially membranes. Also the use of titania based systems is a better alternative for the use since it harnesses the green solar energy and thus reduces the environmental waste due to the use of chemicals. The ability of TiO2 nanoparticles to completely deal with organic pollutants without producing recalcitrant by-products has thus opened new research avenues to be pursued.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgment

The authors are grateful to the Department of Applied Chemistry, University of Johannesburg, South Africa, for constantly supporting our research program on nanomaterials, especially their financial support.

References

  1. K. Murray, L. Slabbert, and B. Moloi, “Needs assessment and development framework for a tested implementation plan for the initialisation and execution of a National Toxicants Monitoring Programme (NTMP),” Final Report, Department of Water Affairs and Forestry (DWAF), Pretoria, South Africa, 2003. View at Google Scholar
  2. T. Pradeep and Anshup, “Noble metal nanoparticles for water purification: a critical review,” Thin Solid Films, vol. 517, no. 24, pp. 6441–6478, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Sun, D. Li, Y. Chen et al., “Synthesis and photocatalytic activity of calcium antimony oxide hydroxide for the degradation of dyes in water,” Journal of Physical Chemistry C, vol. 113, no. 31, pp. 13825–13831, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. X. Wang, Z. Gai, B. Yu et al., “Degradation of carbazole by microbial cells immobilized in magnetic gellan gum gel beads,” Applied and Environmental Microbiology, vol. 73, no. 20, pp. 6421–6428, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Hong and M. Elimelech, “Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes,” Journal of Membrane Science, vol. 132, no. 2, pp. 159–181, 1997. View at Publisher · View at Google Scholar · View at Scopus
  6. T. S. Natarajan, M. Thomas, K. Natarajan, H. C. Bajaj, and R. J. Tayade, “Study on UV-LED/TiO2 process for degradation of Rhodamine B dye,” Chemical Engineering Journal, vol. 169, no. 1–3, pp. 126–134, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. N. Savage and M. S. Diallo, “Nanomaterials and water purification: opportunities and challenges,” Journal of Nanoparticle Research, vol. 7, no. 4-5, pp. 331–342, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Kabra, R. Chaudhary, and R. L. Sawhney, “Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis: a review,” Industrial and Engineering Chemistry Research, vol. 43, no. 24, pp. 7683–7696, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. P. Romero-Gómez, V. Rico, J. P. Espinós, A. R. González-Elipe, R. G. Palgrave, and R. G. Egdell, “Nitridation of nanocrystalline TiO2 thin films by treatment with ammonia,” Thin Solid Films, vol. 519, no. 11, pp. 3587–3595, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. Z. J. Bo, G. Maochu, W. J. Li, L. Z. Min, Z. Ming, and Y. Chen, “Effect of metal doping into Ce0.5Zr0.5O2 on photocatalytic activity of TiO2/Ce0.45Zr0.45M0.1OX (M = Y, La, Mn),” Journal of Hazardous Materials, vol. 143, no. 1-2, pp. 516–521, 2007. View at Publisher · View at Google Scholar
  11. I. Dror, D. Baram, and B. Berkowitz, “Use of nanosized catalysts for transformation of chloro-organic pollutants,” Environmental Science and Technology, vol. 39, no. 5, pp. 1283–1290, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. D. N. Priya, J. M. Modak, and A. M. Raichur, “LbL fabricated poly(styrene sulfonate)/TiO2 multilayer thin films for environmental applications,” ACS Applied Materials & Interfaces, vol. 1, no. 11, pp. 2684–2693, 2009. View at Publisher · View at Google Scholar
  13. H. Choi, E. Stathatos, and D. D. Dionysiou, “Photocatalytic TiO2 films and membranes for the development of efficient wastewater treatment and reuse systems,” Desalination, vol. 202, no. 1-–3, pp. 199–206, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. G. V. Lowry and K. M. Johnson, “Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zerovalent iron in a water/methanol solution,” Environmental Science and Technology, vol. 38, no. 19, pp. 5208–5216, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. W. Nam, J. H. Park, and G. Y. Han, “Enhanced photocatalytic oxidation properties in Pt-TiO2 thin films by grounding,” Korean Journal of Chemical Engineering, vol. 26, no. 2, pp. 392–397, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Wang, T. Zhou, R. Wang, and T.-T. Lim, “Carbon-sensitized and nitrogen-doped TiO2 for photocatalytic degradation of sulfanilamide under visible-light irradiation,” Water Research, vol. 45, no. 16, pp. 5015–5026, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Faroon and J. Olson, Toxilogical Profile for Polychlorinated Biphenyls (PCBs), Agency for Toxic Substances and Disease Registry, US Department of Health and Human Security, 2000.
  18. M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, “Environmental applications of semiconductor photocatalysis,” Chemical Reviews, vol. 95, no. 1, pp. 69–96, 1995. View at Publisher · View at Google Scholar · View at Scopus
  19. T. I. Nkambule, R. W. Krause, B. B. Mamba, and J. Haarhoff, “Removal of natural organic matter from water using ion-exchange resins and cyclodextrin polyurethanes,” Physics and Chemistry of the Earth, vol. 34, no. 13–16, pp. 812–818, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Chen, B. Gu, E. J. LeBoeuf, H. Pan, and S. Dai, “Spectroscopic characterization of the structural and functional properties of natural organic matter fractions,” Chemosphere, vol. 48, no. 1, pp. 59–68, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. H. C. Hong, M. H. Wong, A. Mazumder, and Y. Liang, “Trophic state, natural organic matter content, and disinfection by-product formation potential of six drinking water reservoirs in the Pearl River Delta, China,” Journal of Hydrology, vol. 359, no. 1-2, pp. 164–173, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Matilainen, E. T. Gjessing, T. Lahtinen, L. Hed, A. Bhatnagar, and M. Sillanpää, “An overview of the methods used in the characterisation of natural organic matter (NOM) in relation to drinking water treatment,” Chemosphere, vol. 83, no. 11, pp. 1431–1442, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. B. Gu, J. Schmitt, Z. Chen, L. Liang, and J. F. McCarthy, “Adsorption and desorption of natural organic matter on iron oxide: mechanisms and models,” Environmental Science and Technology, vol. 28, no. 1, pp. 38–46, 1994. View at Publisher · View at Google Scholar · View at Scopus
  24. V. Kanokkantapong, T. F. Marhaba, P. Pavasant, and B. Panyapinyophol, “Characterization of haloacetic acid precursors in source water,” Journal of Environmental Management, vol. 80, no. 3, pp. 214–221, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Mattaraj, C. Jarusutthirak, and R. Jiraratananon, “A combined osmotic pressure and cake filtration model for crossflow nanofiltration of natural organic matter,” Journal of Membrane Science, vol. 322, no. 2, pp. 475–483, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. T. I. Nkambule, R. W. M. Krause, J. Haarhoff, and B. B. Mamba, “Treatability and characterization of natural organic matter (NOM) in South African waters using newly developed methods,” Physics and Chemistry of the Earth, vol. 36, no. 14-15, pp. 1159–1166, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. S. McDonald, A. G. Bishop, P. D. Prenzler, and K. Robards, “Analytical chemistry of freshwater humic substances,” Analytica Chimica Acta, vol. 527, no. 2, pp. 105–124, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Kim, Z. Cai, and M. M. Benjamin, “Effects of adsorbents on membrane fouling by natural organic matter,” Journal of Membrane Science, vol. 310, no. 1-2, pp. 356–364, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Zhang, J. Qu, H. Liu, and X. Zhao, “Characterization of isolated fractions of dissolved organic matter from sewage treatment plant and the related disinfection by-products formation potential,” Journal of Hazardous Materials, vol. 164, no. 2-3, pp. 1433–1438, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. C. M. M. Bougeard, E. H. Goslan, B. Jefferson, and S. A. Parsons, “Comparison of the disinfection by-product formation potential of treated waters exposed to chlorine and monochloramine,” Water Research, vol. 44, no. 3, pp. 729–740, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Kanan and T. Karanfil, “Formation of disinfection by-products in indoor swimming pool water: the contribution from filling water natural organic matter and swimmer body fluids,” Water Research, vol. 45, no. 2, pp. 926–932, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. T. Bond, J. Huang, M. R. Templeton, and N. Graham, “Occurrence and control of nitrogenous disinfection by-products in drinking water—a review,” Water Research, vol. 45, no. 15, pp. 4341–4354, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. B. Chen, W. Lee, P. K. Westerhoff, S. W. Krasner, and P. Herckes, “Solar photolysis kinetics of disinfection byproducts,” Water Research, vol. 44, no. 11, pp. 3401–3409, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. H. Zhang, J. Qu, H. Liu, and D. Wei, “Characterization of dissolved organic matter fractions and its relationship with the disinfection by-product formation,” Journal of Environmental Sciences, vol. 21, no. 1, pp. 54–61, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. I. Kristiana, C. Joll, and A. Heitz, “Powdered activated carbon coupled with enhanced coagulation for natural organic matter removal and disinfection by-product control: application in a western Australian water treatment plant,” Chemosphere, vol. 83, no. 5, pp. 661–667, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. R. Shen and S. A. Andrews, “Demonstration of 20 pharmaceuticals and personal care products (PPCPs) as nitrosamine precursors during chloramine disinfection,” Water Research, vol. 45, no. 2, pp. 944–952, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. S. H. Mhlongo, B. B. Mamba, and R. W. Krause, “Monitoring the prevalence of nitrosamines in South African waters and their removal using cyclodextrin polyurethanes,” Physics and Chemistry of the Earth, Parts A/B/C, vol. 34, no. 13–16, pp. 819–824, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Nawrocki and P. Andrzejewski, “Nitrosamines and water,” Journal of Hazardous Materials, vol. 189, no. 1-2, pp. 1–18, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. V. V. B. Rao and S. R. M. Rao, “Adsorption studies on treatment of textile dyeing industrial effluent by flyash,” Chemical Engineering Journal, vol. 116, no. 1, pp. 77–84, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. S. N. Husaini, J. H. Zaidi, F. Malik, and M. Arif, “Application of nuclear track membrane for the reduction of pollutants in the industrial effluent,” Radiation Measurements, vol. 43, no. 1, pp. S607–S611, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. X.-H. Ou, C.-H. Wu, and S.-L. Lo, “Photodegradation of 4-chlorophenol by UV/photocatalysts: the effect of the interparticle electron transfer process,” Reaction Kinetics and Catalysis Letters, vol. 88, no. 1, pp. 89–95, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. S. M. Ali, S. Z. Sabae, M. Fayez, M. Monib, and N. A. Hegazi, “The influence of agro-industrial effluents on River Nile pollution,” Journal of Advanced Research, vol. 2, no. 1, pp. 85–95, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. B. Sancey, G. Trunfio, J. Charles et al., “Heavy metal removal from industrial effluents by sorption on cross-linked starch: chemical study and impact on water toxicity,” Journal of Environmental Management, vol. 92, no. 3, pp. 765–772, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. K.-H. Kim and S.-K. Ihm, “Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: a review,” Journal of Hazardous Materials, vol. 186, no. 1, pp. 16–34, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. B. Hajem, H. Hamzaoui, and A. M'nif, “Chemical interaction between industrial acid effluents and the hydrous medium,” Desalination, vol. 206, no. 1–3, pp. 154–162, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. L.-C. Chiang, J.-E. Chang, and S.-C. Tseng, “Electrochemical oxidation pretreatment of refractory organic pollutants,” Water Science and Technology, vol. 36, no. 2-3, pp. 123–130, 1997. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Ghasemi, S. Rahimnejad, S. R. Setayesh, S. Rohani, and M. R. Gholami, “Transition metal ions effect on the properties and photocatalytic activity of nanocrystalline TiO2 prepared in an ionic liquid,” Journal of Hazardous Materials, vol. 172, no. 2-3, pp. 1573–1578, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Kaur, S. Vats, S. Rekhi et al., “Physico-chemical analysis of the industrial effluents and their impact on the soil microflora,” Procedia Environmental Sciences, vol. 2, pp. 595–599, 2010. View at Publisher · View at Google Scholar
  49. B. Kayan, B. Gözmen, M. Demirel, and A. M. Gizir, “Degradation of acid red 97 dye in aqueous medium using wet oxidation and electro-Fenton techniques,” Journal of Hazardous Materials, vol. 177, no. 1–3, pp. 95–102, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. L. Lei, Q. Dai, M. Zhou, and X. Zhang, “Decolorization of cationic red X-GRL by wet air oxidation: performance optimization and degradation mechanism,” Physics and Chemistry of the Earth, Parts A/B/C, vol. 68, no. 13–16, pp. 1135–1142, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. H. Y. He, W. X. Dong, and G. H. Zhang, “Photodegradation of aqueous methyl orange on MnTiO3 powder at different initial pH,” Research on Chemical Intermediates, vol. 36, no. 9, pp. 995–1001, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. K. Yu, S. Yang, H. He, C. Sun, C. Gu, and Y. Ju, “Visible light-driven photocatalytic degradation of rhodamine B over NaBiO3: Pathways and mechanism,” Journal of Physical Chemistry A, vol. 113, no. 37, pp. 10024–10032, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. A. Murat, A. Meltem, S. Funda, K. Nadir, A. Ertugrul, and S. Hikmet, “A novel approach to the hydrothermal synthesis of anatase titania nanoparticles and the photocatalytic degradation of rhodamine B,” Turkish Journal of Chemistry, vol. 30, pp. 333–343, 2006. View at Google Scholar
  54. N. C. Respicio and J. Heitz, “Comparative toxicity of rhodamine B and rhodamine 6G to the house fly (Musca domestica L.),” Bulletin of Environmental Contamination and Toxicology, vol. 27, no. 2, pp. 274–281, 1981. View at Google Scholar · View at Scopus
  55. T. Masciangioli and W.-X. Zhang, “Environmental technologies at the nanoscale,” Environmental Science and Technology, vol. 37, no. 5, pp. 102–108, 2003. View at Google Scholar · View at Scopus
  56. S. Suárez, N. Arconada, Y. Castro et al., “Photocatalytic degradation of TCE in dry and wet air conditions with TiO2 porous thin films,” Applied Catalysis B: Environmental, vol. 108-109, pp. 14–21, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. Y. Cao, H. Tan, T. Shi, T. Shi, T. Tang, and J. Li, “Preparation of Ag-doped TiO2 nanoparticles for photocatalytic degradation of acetamiprid in water,” Journal of Chemical Technology and Biotechnology, vol. 83, no. 4, pp. 546–552, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. J. Sá and J. A. Anderson, “FTIR study of aqueous nitrate reduction over Pd/TiO2,” Applied Catalysis B: Environmental, vol. 77, no. 3-4, pp. 409–417, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. C.-M. Hung, “Catalytic wet oxidation of ammonia solution: activity of the nanoscale platinum-palladium-rhodium composite oxide catalyst,” Journal of Hazardous Materials, vol. 163, no. 1, pp. 180–186, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. Z. Wu and M. Zhou, “Partial degradation of phenol by advanced electrochemical oxidation process,” Environmental Science and Technology, vol. 35, no. 13, pp. 2698–2703, 2001. View at Publisher · View at Google Scholar · View at Scopus
  61. J. Mucha and R. Zarzycki, “Analysis of wet oxidation process after initial thermohydrolysis of excess sewage sludge,” Water Research, vol. 42, no. 12, pp. 3025–3032, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. A. W. Zularisam, A. F. Ismail, and R. Salim, “Behaviours of natural organic matter in membrane filtration for surface water treatment—a review,” Desalination, vol. 194, no. 1–3, pp. 211–231, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. M. Anpo, “Utilization of TiO2 photocatalysts in green chemistry,” Pure and Applied Chemistry, vol. 72, no. 7, pp. 1265–1270, 2000. View at Google Scholar · View at Scopus
  64. J.-Y. Li, W.-H. Ma, P.-X. Lei, and J.-C. Zhao, “Detection of intermediates in the TiO2-assisted photodegradation of Rhodamine B under visible light irradiation,” Journal of Environmental Sciences, vol. 19, no. 7, pp. 892–896, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. K. Sunada, Y. Kikuchi, K. Hashimoto, and A. Fujishima, “Bactericidal and detoxification effects of TiO2 thin film photocatalysts,” Environmental Science and Technology, vol. 32, no. 5, pp. 726–728, 1998. View at Publisher · View at Google Scholar · View at Scopus
  66. A. Bhattacharyya, S. Kawi, and M. B. Ray, “Photocatalytic degradation of orange II by TiO2 catalysts supported on adsorbents,” Catalysis Today, vol. 98, no. 3, pp. 431–439, 2004. View at Publisher · View at Google Scholar · View at Scopus
  67. V. Mirkhani, S. Tangestaninejad, M. Moghadam, M. H. Habibi, and A. R. Vartooni, “Photodegradation of aromatic amines by Ag-TiO2 photocatalyst,” Journal of the Iranian Chemical Society, vol. 6, no. 4, pp. 800–807, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. P. E. Savage, “Organic chemical reactions in supercritical water,” Chemical Reviews, vol. 99, no. 2-3, pp. 603–621, 1999. View at Publisher · View at Google Scholar · View at Scopus
  69. H. E. Barner, C. Y. Huang, T. Johnson, G. Jacobs, M. A. Martch, and W. R. Killilea, “Supercritical water oxidation: an emerging technology,” Journal of Hazardous Materials, vol. 31, no. 1, pp. 1–17, 1992. View at Publisher · View at Google Scholar · View at Scopus
  70. V. Marulanda and G. Bolaños, “Supercritical water oxidation of a heavily PCB-contaminated mineral transformer oil: Laboratory-scale data and economic assessment,” Journal of Supercritical Fluids, vol. 54, no. 2, pp. 258–265, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. S.-H. Son, J.-H. Lee, and C.-H. Lee, “Corrosion phenomena of alloys by subcritical and supercritical water oxidation of 2-chlorophenol,” Journal of Supercritical Fluids, vol. 44, no. 3, pp. 370–378, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. T. Fujii, R. Hayashi, S.-I. Kawasaki, A. Suzuki, and Y. Oshima, “Water density effects on methanol oxidation in supercritical water at high pressure up to 100 MPa,” Journal of Supercritical Fluids, vol. 58, no. 1, pp. 142–149, 2011. View at Publisher · View at Google Scholar · View at Scopus
  73. P. A. Marrone and G. T. Hong, “Corrosion control methods in supercritical water oxidation and gasification processes,” Journal of Supercritical Fluids, vol. 51, no. 2, pp. 83–103, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. R. Hayashi, M. Onishi, M. Sugiyama, S. Koda, and Y. Oshima, “Kinetic analysis on alcohol concentration and mixture effect in supercritical water oxidation of methanol and ethanol by elementary reaction model,” The Journal of Supercritical Fluids, vol. 40, no. 1, pp. 74–83, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. F. Stüber, J. Font, A. Fortuny, C. Bengoa, A. Eftaxias, and A. Fabregat, “Carbon materials and catalytic wet air oxidation of organic pollutants in wastewater,” Topics in Catalysis, vol. 33, no. 1–4, pp. 3–50, 2005. View at Publisher · View at Google Scholar · View at Scopus
  76. N. Li, C. Descorme, and M. Besson, “Catalytic wet air oxidation of chlorophenols over supported ruthenium catalysts,” Journal of Hazardous Materials, vol. 146, no. 3, pp. 602–609, 2007. View at Publisher · View at Google Scholar · View at Scopus
  77. D. Prabhakaran, T. Kannadasan, and C. Ahmed Basha, “Mediated electrochemical oxidation process for destruction of TOC in a batch recirculation reactor,” International Journal of ChemTech Research, vol. 1, no. 4, pp. 962–969, 2009. View at Google Scholar · View at Scopus
  78. D. Nematollahi and L. Mohammadi-Behzad, “Electrochemical oxidation of catechol in the presence of some azacrown ethers and transition metal ions in acetonitrile,” International Journal of Electrochemical Science, vol. 4, no. 11, pp. 1583–1592, 2009. View at Google Scholar · View at Scopus
  79. L.-C. Chiang, J.-E. Chang, and T.-C. Wen, “Indirect oxidation effect in electrochemical oxidation treatment of landfill leachate,” Water Research, vol. 29, no. 2, pp. 671–678, 1995. View at Publisher · View at Google Scholar · View at Scopus
  80. J. D. Rodgers, W. Jedral, and N. J. Bunce, “Electrochemical oxidation of chlorinated phenols,” Environmental Science and Technology, vol. 33, no. 9, pp. 1453–1457, 1999. View at Publisher · View at Google Scholar · View at Scopus
  81. S. Jiao, S. Zheng, D. Yin, L. Wang, and L. Chen, “Aqueous photolysis of tetracycline and toxicity of photolytic products to luminescent bacteria,” Chemosphere, vol. 73, no. 3, pp. 377–382, 2008. View at Publisher · View at Google Scholar · View at Scopus
  82. L. Fang, J. Huang, G. Yu, and X. Li, “Quantitative structure-property relationship studies for direct photolysis rate constants and quantum yields of polybrominated diphenyl ethers in hexane and methanol,” Ecotoxicology and Environmental Safety, vol. 72, no. 5, pp. 1587–1593, 2009. View at Publisher · View at Google Scholar · View at Scopus
  83. B. Abramović, D. Šojić, and V. Anderluh, “Visible-light-induced photocatalytic degradation of herbicide mecoprop in aqueous suspension of TiO2,” Acta Chimica Slovenica, vol. 54, no. 3, pp. 558–564, 2007. View at Google Scholar · View at Scopus
  84. E. Bae and W. Choi, “Highly enhanced photoreductive degradation of perchlorinated compounds on dye-sensitized metal/TiO2 under visible light,” Environmental Science & Technology, vol. 37, no. 1, pp. 147–152, 2003. View at Publisher · View at Google Scholar · View at Scopus
  85. F. Zhang, J. Zhao, T. Shen, H. Hidaka, E. Pelizzetti, and N. Serpone, “TiO2-assisted photodegradation of dye pollutants. II. Adsorption and degradation kinetics of eosin in TiO2 dispersions under visible light irradiation,” Applied Catalysis B: Environmental, vol. 15, no. 1-2, pp. 147–156, 1998. View at Publisher · View at Google Scholar · View at Scopus
  86. L. Zhang and T. J. Webster, “Nanotechnology and nanomaterials: promises for improved tissue regeneration,” Nano Today, vol. 4, no. 1, pp. 66–80, 2009. View at Publisher · View at Google Scholar · View at Scopus
  87. B. F. G. Johnson, “Nanoparticles in catalysis,” Topics in Catalysis, vol. 24, no. 1–4, pp. 147–159, 2003. View at Publisher · View at Google Scholar · View at Scopus
  88. X. Chen and S. S. Mao, “Titanium dioxide nanomaterials: Synthesis, properties, modifications and applications,” Chemical Reviews, vol. 107, no. 7, pp. 2891–2959, 2007. View at Publisher · View at Google Scholar · View at Scopus
  89. Z. He, C. Sun, S. Yang, Y. Ding, H. He, and Z. Wang, “Photocatalytic degradation of rhodamine B by Bi2WO6 with electron accepting agent under microwave irradiation: mechanism and pathway,” Journal of Hazardous Materials, vol. 162, no. 2-3, pp. 1477–1486, 2009. View at Publisher · View at Google Scholar · View at Scopus
  90. W. Dong and C. Zhu, “Optical properties of surface-modified Bi2O3 nanoparticles,” Journal of Physics and Chemistry of Solids, vol. 64, no. 2, pp. 265–271, 2003. View at Publisher · View at Google Scholar · View at Scopus
  91. F. Meng, F. Lu, Z. Sun, and J. Lü, “A mechanism for enhanced photocatalytic activity of nano-size silver particle modified titanium dioxide thin films,” Science China Technological Sciences, vol. 53, no. 11, pp. 3027–3032, 2010. View at Publisher · View at Google Scholar · View at Scopus
  92. A. Fujishima, T. N. Rao, and D. A. Tryk, “Titanium dioxide photocatalysis,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 1, no. 1, pp. 1–21, 2000. View at Publisher · View at Google Scholar · View at Scopus
  93. M. Ni, M. K. H. Leung, D. Y. C. Leung, and K. Sumathy, “A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production,” Renewable and Sustainable Energy Reviews, vol. 11, no. 3, pp. 401–425, 2007. View at Publisher · View at Google Scholar · View at Scopus
  94. W. Tang, Q. Wang, X. Zeng, and X. Chen, “Photocatalytic degradation on Disperse Blue with modified nano-TiO2 film electrode,” Journal of Solid State Electrochemistry, vol. 16, no. 4, pp. 1429–1445, 2012. View at Publisher · View at Google Scholar · View at Scopus
  95. U. Diebold, “The surface science of titanium dioxide,” Surface Science Reports, vol. 48, no. 5–8, pp. 53–229, 2003. View at Publisher · View at Google Scholar · View at Scopus
  96. A. Kudo, R. Niishiro, A. Iwase, and H. Kato, “Effects of doping of metal cations on morphology, activity, and visible light response of photocatalysts,” Chemical Physics, vol. 339, no. 1–3, pp. 104–110, 2007. View at Publisher · View at Google Scholar · View at Scopus
  97. A. R. Malagutti, H. A. J. L. Mourão, J. R. Garbin, and C. Ribeiro, “Deposition of TiO2 and Ag:TiO2 thin films by the polymeric precursor method and their application in the photodegradation of textile dyes,” Applied Catalysis B: Environmental, vol. 90, no. 1-2, pp. 205–212, 2009. View at Publisher · View at Google Scholar · View at Scopus
  98. K. M. Reddy, S. V. Manorama, and A. R. Reddy, “Bandgap studies on anatase titanium dioxide nanoparticles,” Materials Chemistry and Physics, vol. 78, no. 1, pp. 239–245, 2003. View at Publisher · View at Google Scholar · View at Scopus
  99. R. Pode, “On the problem of open circuit voltage in metal phthalocyanine/C60 organic solar cells,” Advanced Materials Letters, vol. 2, pp. 3–11, 2011. View at Google Scholar
  100. R. Ferrando, J. Jellinek, and R. L. Johnston, “Nanoalloys: from theory to applications of alloy clusters and nanoparticles,” Chemical Reviews, vol. 108, no. 3, pp. 845–910, 2008. View at Publisher · View at Google Scholar · View at Scopus
  101. L. Shivalingappa, J. Sheng, and T. Fukami, “Photocatalytic effect in platinum doped titanium dioxide films,” Vacuum, vol. 48, no. 5, pp. 413–416, 1997. View at Publisher · View at Google Scholar · View at Scopus
  102. C. Minero, G. Mariella, V. Maurino, D. Vione, and E. Pelizzetti, “Photocatalytic transformation of organic compounds in the presence of inorganic ions. 2. Competitive reactions of phenol and alcohols on a titanium dioxide-fluoride system,” Langmuir, vol. 16, no. 23, pp. 8964–8972, 2000. View at Publisher · View at Google Scholar · View at Scopus
  103. C. Minero, G. Mariella, V. Maurino, and E. Pelizzetti, “Photocatalytic transformation of organic compounds in the presence of inorganic anions. 1. Hydroxyl-mediated and direct electron-transfer reactions of phenol on a titanium dioxide-fluoride system,” Langmuir, vol. 16, no. 6, pp. 2632–2641, 2000. View at Publisher · View at Google Scholar · View at Scopus
  104. S. Wang, L. Ji, B. Wu, Q. Gong, Y. Zhu, and J. Liang, “Influence of surface treatment on preparing nanosized TiO2 supported on carbon nanotubes,” Applied Surface Science, vol. 255, no. 5, pp. 3263–3266, 2008. View at Publisher · View at Google Scholar · View at Scopus
  105. P. Bouras, E. Stathatos, and P. Lianos, “Pure versus metal-ion-doped nanocrystalline titania for photocatalysis,” Applied Catalysis B: Environmental, vol. 73, no. 1-2, pp. 51–59, 2007. View at Publisher · View at Google Scholar · View at Scopus
  106. M. M. Mahlambi, A. K. Mishra, S. B. Mishra, R. W. Krause, B. B. Mamba, and A. M. Raichur, “Effect of metal ions (Ag, Co, Ni, and Pd) on the visible light degradation of Rhodamine B by carbon-covered alumina-supported TiO2 in aqueous solutions,” Industrial and Engineering Chemistry Research, vol. 52, no. 5, pp. 1783–1794, 2013. View at Publisher · View at Google Scholar · View at Scopus
  107. W. Weng, M. Ma, P. Du et al., “Superhydrophilic Fe doped titanium dioxide thin films prepared by a spray pyrolysis deposition,” Surface and Coatings Technology, vol. 198, no. 1–3, pp. 340–344, 2005. View at Publisher · View at Google Scholar · View at Scopus
  108. A. Izquierdo, S. S. Ono, J.-C. Voegel, P. Schaaf, and G. Decher, “Dipping versus spraying: exploring the deposition conditions for speeding up layer-by-layer assembly,” Langmuir, vol. 21, no. 16, pp. 7558–7567, 2005. View at Publisher · View at Google Scholar · View at Scopus
  109. G. Decher, “Fuzzy nanoassemblies: toward layered polymeric multicomposites,” Science, vol. 277, no. 5330, pp. 1232–1237, 1997. View at Publisher · View at Google Scholar · View at Scopus
  110. M. M. Mahlambi, A. K. Mishra, S. B. Mishra, A. M. Raichur, B. B. Mamba, and R. W. Krause, “Layer-by-layer self-assembled metal-ion- (Ag-, Co-, Ni-, and Pd-) doped TiO2 nanoparticles: synthesis, characterisation, and visible light degradation of rhodamine B,” Journal of Nanomaterials, vol. 2012, Article ID 302046, 12 pages, 2012. View at Publisher · View at Google Scholar
  111. M. M. Mahlambi, O. T. Mahlangu, G. D. Vilakati, and B. B. Mamba, “Visible light photodegradation of rhodamine B dye by two forms of carbon-covered alumina supported TiO2/polysulfone membranes,” Industrial and Engineering Chemistry Research, vol. 53, no. 14, pp. 5709–5717, 2014. View at Publisher · View at Google Scholar · View at Scopus
  112. M. M. Mahlambi, G. D. Vilakati, and B. B. Mamba, “Synthesis, characterization, and visible light degradation of rhodamine B dye by carbon-covered alumina supported Pd-TiO2/polysulfone membranes,” Separation Science and Technology, vol. 49, no. 14, pp. 2124–2134, 2014. View at Publisher · View at Google Scholar
  113. A. N. Guz and Y. Y. Rushchitskii, “Nanomaterials: on the mechanics of nanomaterials,” International Applied Mechanics, vol. 39, no. 11, pp. 1271–1293, 2003. View at Publisher · View at Google Scholar · View at Scopus
  114. J. D. Mackenzie and E. P. Bescher, “Chemical routes in the synthesis of nanomaterials using the sol-gel process,” Accounts of Chemical Research, vol. 40, no. 9, pp. 810–818, 2007. View at Publisher · View at Google Scholar · View at Scopus
  115. C. E. Allmond, A. T. Sellinger, K. Gogick, and J. M. Fitz-Gerald, “Photo-chemical synthesis and deposition of noble metal nanoparticles,” Applied Physics A, vol. 86, no. 4, pp. 477–480, 2007. View at Publisher · View at Google Scholar · View at Scopus
  116. K. Ramanathan, D. Avnir, A. Modestov, and O. Lev, “Sol-gel derived ormosil-exfoliated graphite-TiO2 composite floating catalyst: photodeposition of copper,” Chemistry of Materials, vol. 9, no. 11, pp. 2533–2540, 1997. View at Publisher · View at Google Scholar · View at Scopus
  117. J. Wang, R. Li, Z. Zhang et al., “Degradation of hazardous dyes in wastewater using nanometer mixed crystal TiO2 powders under visible light irradiation,” Water, Air, and Soil Pollution, vol. 189, no. 1–4, pp. 225–237, 2008. View at Publisher · View at Google Scholar · View at Scopus
  118. D. Beydoun and R. Amal, “Implications of heat treatment on the properties of a magnetic iron oxide-titanium dioxide photocatalyst,” Materials Science and Engineering B, vol. 94, no. 1, pp. 71–81, 2002. View at Publisher · View at Google Scholar · View at Scopus
  119. W. Ho, J. C. Yu, and S. Lee, “Synthesis of hierarchical nanoporous F-doped TiO2 spheres with visible light photocatalytic activity,” Chemical Communications, no. 10, pp. 1115–1117, 2006. View at Publisher · View at Google Scholar · View at Scopus
  120. J. Yu and J. Zhang, “A simple template-free approach to TiO2 hollow spheres with enhanced photocatalytic activity,” Dalton Transactions, vol. 39, no. 25, pp. 5860–5867, 2010. View at Publisher · View at Google Scholar · View at Scopus
  121. H. D. Jang, S.-K. Kim, and S.-J. Kim, “Effect of particle size and phase composition of titanium dioxide nanoparticles on the photocatalytic properties,” Journal of Nanoparticle Research, vol. 3, no. 2-3, pp. 141–147, 2001. View at Publisher · View at Google Scholar · View at Scopus
  122. A. Pottier, C. Chanéac, E. Tronc, L. Mazerolles, and J.-P. Jolivet, “Synthesis of brookite TiO2 nanoparticles by thermolysis of TiCl4 in strongly acidic aqueous media,” Journal of Materials Chemistry, vol. 11, no. 4, pp. 1116–1121, 2001. View at Publisher · View at Google Scholar · View at Scopus
  123. D.-S. Seo, J.-K. Lee, E.-G. Lee, and H. Kim, “Effect of aging agents on the formation of TiO2 nanocrystalline powder,” Materials Letters, vol. 51, no. 2, pp. 115–119, 2001. View at Publisher · View at Google Scholar · View at Scopus
  124. M. Afuyoni, G. Nashed, and I. M. Nasser, “TiO2 doped with SnO2 and studing its structural and electrical properties,” Energy Procedia, vol. 6, pp. 11–20, 2011. View at Publisher · View at Google Scholar
  125. S. Nakade, M. Matsuda, S. Kambe et al., “Dependence of TiO2 nanoparticle preparation methods and annealing temperature on the efficiency of dye-sensitized solar cells,” Journal of Physical Chemistry B, vol. 106, no. 39, pp. 10004–10010, 2002. View at Publisher · View at Google Scholar · View at Scopus
  126. M. Subramanian, S. Vijayalakshmi, S. Venkataraj, and R. Jayavel, “Effect of cobalt doping on the structural and optical properties of TiO2 films prepared by sol-gel process,” Thin Solid Films, vol. 516, no. 12, pp. 3776–3782, 2008. View at Publisher · View at Google Scholar · View at Scopus
  127. J. Ovenstone, “Preparation of novel titania photocatalysts with high activity,” Journal of Materials Science, vol. 36, no. 6, pp. 1325–1329, 2001. View at Publisher · View at Google Scholar · View at Scopus
  128. Y. Zhang, A. Weidenkaff, and A. Reller, “Mesoporous structure and phase transition of nanocrystalline TiO2,” Materials Letters, vol. 54, no. 5-6, pp. 375–381, 2002. View at Publisher · View at Google Scholar · View at Scopus
  129. M. Behpour, S. M. Ghoreishi, and F. S. Razavi, “Photocatalytic activity of TiO2/Ag nanoparticles on degradation of water pollutions,” Digest Journal of Nanomaterials and Biostructures, vol. 5, no. 2, pp. 467–475, 2010. View at Google Scholar · View at Scopus
  130. J. Araña, J. M. Doña-Rodríguez, E. Tello Rendón et al., “TiO2 activation by using activated carbon as a support: part I. Surface characterisation and decantability study,” Applied Catalysis B: Environmental, vol. 44, no. 2, pp. 161–172, 2003. View at Publisher · View at Google Scholar · View at Scopus
  131. P. C. Lansåker, J. Backholm, G. A. Niklasson, and C. G. Granqvist, “TiO2/Au/TiO2 multilayer thin films: novel metal-based transparent conductors for electrochromic devices,” Thin Solid Films, vol. 518, no. 4, pp. 1225–1229, 2009. View at Publisher · View at Google Scholar · View at Scopus
  132. M.-S. Wong, S.-W. Hsu, K. K. Rao, and C. P. Kumar, “Influence of crystallinity and carbon content on visible light photocatalysis of carbon doped titania thin films,” Journal of Molecular Catalysis A: Chemical, vol. 279, no. 1, pp. 20–26, 2008. View at Publisher · View at Google Scholar · View at Scopus
  133. T. Peng, D. Zhao, K. Dai, W. Shi, and K. Hirao, “Synthesis of titanium dioxide nanoparticles with mesoporous anatase wall and high photocatalytic activity,” Journal of Physical Chemistry B, vol. 109, no. 11, pp. 4947–4952, 2005. View at Publisher · View at Google Scholar · View at Scopus
  134. J. P. Vicente, T. Gacoin, P. Barboux, J.-P. Boilot, M. Rondet, and L. Guéneau, “Photocatalytic decomposition of fatty stains by TiO2 thin films,” International Journal of Photoenergy, vol. 5, no. 2, pp. 95–98, 2003. View at Publisher · View at Google Scholar · View at Scopus
  135. P. Kiri, G. Hyett, and R. Binions, “Solid state thermochromic materials,” Advanced Materials Letters, vol. 1, no. 2, pp. 86–105, 2010. View at Publisher · View at Google Scholar
  136. M. I. Zaki, G. A. H. Mekhemer, N. E. Fouad, T. C. Jagadale, and S. B. Ogale, “Surface texture and specific adsorption sites of sol-gel synthesized anatase TiO2 nanoparticles,” Materials Research Bulletin, vol. 45, no. 10, pp. 1470–1475, 2010. View at Publisher · View at Google Scholar · View at Scopus
  137. A. S. Barnard and P. Zapol, “Predicting the energetics, phase stability, and morphology evolution of faceted and spherical anatase nanocrystals,” Journal of Physical Chemistry B, vol. 108, no. 48, pp. 18435–18440, 2004. View at Publisher · View at Google Scholar · View at Scopus
  138. J. Zhu, J. Zhang, F. Chen, K. Iino, and M. Anpo, “High activity TiO2 photocatalysts prepared by a modified sol-gel method: characterization and their photocatalytic activity for the degradation of XRG and X-GL,” Topics in Catalysis, vol. 35, no. 3-4, pp. 261–268, 2005. View at Publisher · View at Google Scholar · View at Scopus
  139. J. A. Navío, G. Colón, M. Macías, C. Real, and M. I. Litter, “Iron-doped titania semiconductor powders prepared by a sol-gel method. Part I: synthesis and characterization,” Applied Catalysis A: General, vol. 177, no. 1, pp. 111–120, 1999. View at Publisher · View at Google Scholar · View at Scopus
  140. V. Panić, A. Dekanski, S. Milonjić, R. Atanasoski, and B. Nikolić, “The influence of the aging time of RuO2 and TiO2 sols on the electrochemical properties and behavior for the chlorine evolution reaction of activated titanium anodes obtained by the sol-gel procedure,” Electrochimica Acta, vol. 46, no. 2-3, pp. 415–421, 2000. View at Publisher · View at Google Scholar
  141. J. Zarzycki, “Past and present of sol-gel science and technology,” Journal of Sol-Gel Science and Technology, vol. 8, no. 1–3, pp. 17–22, 1997. View at Google Scholar · View at Scopus
  142. A. Ahmad, J. Thiel, and S. I. Shah, “Structural effects of niobium and silver doping on titanium dioxide nanoparticles,” Journal of Physics: Conference Series, vol. 61, no. 1, pp. 11–15, 2007. View at Publisher · View at Google Scholar · View at Scopus
  143. K.-R. Zhu, M.-S. Zhang, J.-M. Hong, and Z. Yin, “Size effect on phase transition sequence of TiO2 nanocrystal,” Materials Science and Engineering A, vol. 403, no. 1-2, pp. 87–93, 2005. View at Publisher · View at Google Scholar · View at Scopus
  144. T. Sugimoto, K. Okada, and H. Itoh, “Synthesis of uniform spindle-type titania particles by the gel-sol method,” Journal of Colloid and Interface Science, vol. 193, no. 1, pp. 140–143, 1997. View at Publisher · View at Google Scholar · View at Scopus
  145. T. Sugimoto, X. Zhou, and A. Muramatsu, “Synthesis of uniform anatase TiO2 nanoparticles by gel–sol method: 1. Solution chemistry of Ti(OH)n(4-n)+ complexes,” Journal of Colloid and Interface Science, vol. 252, pp. 339–346, 2002. View at Google Scholar
  146. T. Sugimoto, X. Zhou, and A. Muramatsu, “Synthesis of uniform anatase TiO2 nanoparticles by gel-sol method. 4. Shape control,” Journal of Colloid and Interface Science, vol. 259, no. 1, pp. 53–61, 2003. View at Publisher · View at Google Scholar · View at Scopus
  147. T. Sugimoto, X. Zhou, and A. Muramatsu, “Synthesis of uniform anatase TiO2 nanoparticles by gel-sol method: 3. Formation process and size control,” Journal of Colloid and Interface Science, vol. 259, no. 1, pp. 43–52, 2003. View at Publisher · View at Google Scholar · View at Scopus
  148. W. Chen and W. Gao, “Sol-enhanced electroplating of nanostructured Ni–TiO2 composite coatings—the effects of sol concentration on the mechanical and corrosion properties,” Electrochimica Acta, vol. 55, no. 22, pp. 6865–6871, 2010. View at Publisher · View at Google Scholar · View at Scopus
  149. Y. Lei, L. D. Zhang, and J. C. Fan, “Fabrication, characterization and Raman study of TiO2 nanowire arrays prepared by anodic oxidative hydrolysis of TiCl3,” Chemical Physics Letters, vol. 338, no. 4-6, pp. 231–236, 2001. View at Publisher · View at Google Scholar · View at Scopus
  150. X.-S. Zhou, L.-J. Li, Y.-H. Lin, and C.-W. Nan, “Characterization and properties of anatase TiO2 film prepared via colloidal sol method under low temperature,” Journal of Electroceramics, vol. 21, no. 1–4, pp. 795–797, 2008. View at Publisher · View at Google Scholar · View at Scopus
  151. J. Zhu, J. Ren, Y. Huo, Z. Bian, and H. Li, “Nanocrystalline Fe/TiO2 visible photocatalyst with a mesoporous structure prepared via a nonhydrolytic sol-gel route,” Journal of Physical Chemistry C, vol. 111, no. 51, pp. 18965–18969, 2007. View at Publisher · View at Google Scholar · View at Scopus
  152. G. Guo, J. K. Whitesell, and M. A. Fox, “Synthesis of TiO2 photocatalysts in supercritical CO2 via a non-hydrolytic route,” Journal of Physical Chemistry B, vol. 109, no. 40, pp. 18781–18785, 2005. View at Publisher · View at Google Scholar · View at Scopus
  153. Y.-W. Jun, M. F. Casula, J.-H. Sim, S. Y. Kim, J. Cheon, and A. P. Alivisatos, “Surfactant-assisted elimination of a high energy facet as a means of controlling the shapes of TiO2 nanocrystals,” Journal of the American Chemical Society, vol. 125, no. 51, pp. 15981–15985, 2003. View at Publisher · View at Google Scholar · View at Scopus
  154. T. J. Trentler, T. E. Denler, J. F. Bertone, A. Agrawal, and V. L. Colvin, “Synthesis of TiO2 nanocrystals by nonhydrolytic solution-based reactions,” Journal of the American Chemical Society, vol. 121, no. 7, pp. 1613–1614, 1999. View at Publisher · View at Google Scholar · View at Scopus
  155. B. Koo, J. Park, Y. Kim, S.-H. Choi, Y.-E. Sung, and T. Hyeon, “Simultaneous phase- and size-controlled synthesis of TiO2 nanorods via non-hydrolytic sol-gel reaction of syringe pump delivered precursors,” Journal of Physical Chemistry B, vol. 110, no. 48, pp. 24318–24323, 2006. View at Publisher · View at Google Scholar · View at Scopus
  156. A. López, D. Acosta, A. I. Martínez, and J. Santiago, “Nanostructured low crystallized titanium dioxide thin films with good photocatalytic activity,” Powder Technology, vol. 202, no. 1–3, pp. 111–117, 2010. View at Publisher · View at Google Scholar · View at Scopus
  157. J. Liu, Y. Zhao, L. Shi et al., “Solvothermal synthesis of crystalline phase and shape controlled Sn4+-Doped TiO2 nanocrystals: Effects of reaction solvent,” ACS Applied Materials and Interfaces, vol. 3, no. 4, pp. 1261–1268, 2011. View at Publisher · View at Google Scholar · View at Scopus
  158. J. Liao, L. Shi, S. Yuan, Y. Zhao, and J. Fang, “Solvothermal synthesis of TiO2 nanocrystal colloids from peroxotitanate complex solution and their photocatalytic activities,” Journal of Physical Chemistry C, vol. 113, no. 43, pp. 18778–18783, 2009. View at Publisher · View at Google Scholar · View at Scopus
  159. W. Q. Fang, J. Z. Zhou, J. Liu et al., “Hierarchical structures of single-crystalline anatase TiO2 nanosheets dominated by 001 facets,” Chemistry, vol. 17, no. 5, pp. 1423–1427, 2011. View at Publisher · View at Google Scholar · View at Scopus
  160. X. Wang, J. Zhuang, Q. Peng, and Y. Li, “A general strategy for nanocrystal synthesis,” Nature, vol. 437, no. 7055, pp. 121–124, 2005. View at Publisher · View at Google Scholar · View at Scopus
  161. X.-L. Li, Q. Peng, J.-X. Yi, X. Wang, and Y. Li, “Near monodisperse TiO2 nanoparticles and nanorods,” Chemistry—A European Journal, vol. 12, no. 8, pp. 2383–2391, 2006. View at Publisher · View at Google Scholar · View at Scopus
  162. J. Xu, J.-P. Ge, and Y.-D. Li, “Solvothermal synthesis of monodisperse PbSe nanocrystals,” The Journal of Physical Chemistry B, vol. 110, no. 6, pp. 2497–2501, 2006. View at Publisher · View at Google Scholar · View at Scopus
  163. K. S. Yeung and Y. W. Lam, “A simple chemical vapour deposition method for depositing thin TiO2 films,” Thin Solid Films, vol. 109, no. 2, pp. 169–178, 1983. View at Publisher · View at Google Scholar · View at Scopus
  164. H. Yoshitake, T. Sugihara, and T. Tatsumi, “Preparation of wormhole-like mesoporous TiO2 with an extremely large surface area and stabilization of its surface by chemical vapor deposition,” Chemistry of Materials, vol. 14, no. 3, pp. 1023–1029, 2002. View at Publisher · View at Google Scholar · View at Scopus
  165. H. Nizard, M. L. Kosinova, N. I. Fainer, Y. M. Rumyantsev, B. M. Ayupov, and Y. V. Shubin, “Deposition of titanium dioxide from TTIP by plasma enhanced and remote plasma enhanced chemical vapor deposition,” Surface and Coatings Technology, vol. 202, no. 17, pp. 4076–4085, 2008. View at Publisher · View at Google Scholar · View at Scopus
  166. Y. Guo, X.-W. Zhang, W.-H. Weng, and G.-R. Han, “Structure and properties of nitrogen-doped titanium dioxide thin films grown by atmospheric pressure chemical vapor deposition,” Thin Solid Films, vol. 515, no. 18, pp. 7117–7121, 2007. View at Publisher · View at Google Scholar · View at Scopus
  167. P. G. Karlsson, J. H. Richter, M. P. Andersson et al., “TiO2 chemical vapor deposition on Si(111) in ultrahigh vacuum: transition from interfacial phase to crystalline phase in the reaction limited regime,” Surface Science, vol. 605, no. 13-14, pp. 1147–1156, 2011. View at Publisher · View at Google Scholar · View at Scopus
  168. W.-Y. Ahn, S. A. Sheeley, T. Rajh, and D. M. Cropek, “Photocatalytic reduction of 4-nitrophenol with arginine-modified titanium dioxide nanoparticles,” Applied Catalysis B: Environmental, vol. 74, no. 1-2, pp. 103–110, 2007. View at Publisher · View at Google Scholar · View at Scopus
  169. B. Neppolian, H. Yamashita, Y. Okada, H. Nishijima, and M. Anpo, “Preparation of unique TiO2 nano-particle photocatalysts by a multi-gelation method for control of the physicochemical parameters and reactivity,” Catalysis Letters, vol. 105, no. 1-2, pp. 111–117, 2005. View at Publisher · View at Google Scholar · View at Scopus
  170. H. Liu, W. Yang, Y. Ma et al., “Synthesis and characterization of titania prepared by using a photoassisted sol-gel method,” Langmuir, vol. 19, no. 7, pp. 3001–3005, 2003. View at Publisher · View at Google Scholar · View at Scopus
  171. Y. Bessekhouad, D. Robert, and J. V. Weber, “Synthesis of photocatalytic TiO2 nanoparticles: optimization of the preparation conditions,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 157, no. 1, pp. 47–53, 2003. View at Publisher · View at Google Scholar · View at Scopus
  172. G. Tian, H. Fu, L. Jing, and C. Tian, “Synthesis and photocatalytic activity of stable nanocrystalline TiO2 with high crystallinity and large surface area,” Journal of Hazardous Materials, vol. 161, no. 2-3, pp. 1122–1130, 2009. View at Publisher · View at Google Scholar · View at Scopus
  173. A. Daßler, A. Feltz, J. Jung, W. Ludwig, and E. Kaisersberger, “Characterization of rutile and anatase powders by thermal analysis,” Journal of Thermal Analysis, vol. 33, no. 3, pp. 803–809, 1988. View at Publisher · View at Google Scholar · View at Scopus
  174. W. Fu, H. Yang, M. Li, M. Li, N. Yang, and G. Zou, “Anatase TiO2 nanolayer coating on cobalt ferrite nanoparticles for magnetic photocatalyst,” Materials Letters, vol. 59, no. 27, pp. 3530–3534, 2005. View at Publisher · View at Google Scholar · View at Scopus
  175. N. Chitose, S. Ueta, S. Seino, and T. A. Yamamoto, “Radiolysis of aqueous phenol solutions with nanoparticles. 1. Phenol degradation and TOC removal in solutions containing TiO2 induced by UV, γ-ray and electron beams,” Chemosphere, vol. 50, no. 8, pp. 1007–1013, 2003. View at Publisher · View at Google Scholar · View at Scopus
  176. X. Li, R. Xiong, and G. Wei, “S-N co-doped TiO2 photocatalysts with visible-light activity prepared by sol-gel method,” Catalysis Letters, vol. 125, no. 1-2, pp. 104–109, 2008. View at Publisher · View at Google Scholar · View at Scopus
  177. K. Mori, K. Maki, S. Kawasaki, S. Yuan, and H. Yamashita, “Hydrothermal synthesis of TiO2 photocatalysts in the presence of NH4F and their application for degradation of organic compounds,” Chemical Engineering Science, vol. 63, no. 20, pp. 5066–5070, 2008. View at Publisher · View at Google Scholar · View at Scopus
  178. M.-C. Wang, H.-J. Lin, C.-H. Wang, and H.-C. Wu, “Effects of annealing temperature on the photocatalytic activity of N-doped TiO2 thin films,” Ceramics International, vol. 38, no. 1, pp. 195–200, 2012. View at Publisher · View at Google Scholar · View at Scopus
  179. D.-S. Bae, K.-S. Han, and J. H. Adair, “Synthesis of Cu/SiO2 nanosize particles by a reverse micelle and sol-gel processing,” Journal of Materials Science Letters, vol. 21, no. 1, pp. 53–54, 2002. View at Publisher · View at Google Scholar · View at Scopus
  180. S.-W. Wei, B. Peng, L.-Y. Chai, Y.-C. Liu, and Z.-Y. Li, “Preparation of doping titania antibacterial powder by ultrasonic spray pyrolysis,” Transactions of Nonferrous Metals Society of China, vol. 18, no. 5, pp. 1145–1150, 2008. View at Publisher · View at Google Scholar · View at Scopus
  181. C.-C. Chan, C.-C. Chang, W.-C. Hsu, S.-K. Wang, and J. Lin, “Photocatalytic activities of Pd-loaded mesoporous TiO2 thin films,” Chemical Engineering Journal, vol. 152, no. 2-3, pp. 492–497, 2009. View at Publisher · View at Google Scholar · View at Scopus
  182. M. Hamadanian, A. Reisi-Vanani, and A. Majedi, “Sol-gel preparation and characterization of Co/TiO2 nanoparticles: application to the degradation of methyl orange,” Journal of the Iranian Chemical Society, vol. 7, no. 1, pp. S52–S58, 2010. View at Publisher · View at Google Scholar · View at Scopus
  183. S. Klosek and D. Raftery, “Visible light driven V-doped TiO2 photocatalyst and its photooxidation of ethanol,” Journal of Physical Chemistry B, vol. 105, no. 14, pp. 2815–2819, 2002. View at Publisher · View at Google Scholar · View at Scopus
  184. G. N. Kryukova, G. A. Zenkovets, A. A. Shutilov et al., “Structural peculiarities of TiO2 and Pt/TiO2 catalysts for the photocatalytic oxidation of aqueous solution of acid orange 7 dye upon ultraviolet light,” Applied Catalysis B: Environmental, vol. 71, no. 3-4, pp. 169–176, 2007. View at Publisher · View at Google Scholar · View at Scopus
  185. R. Mechiakh, N. B. Sedrine, and R. Chtourou, “Sol-gel synthesis, characterization and optical properties of mercury-doped TiO2 thin films deposited on ITO glass substrates,” Applied Surface Science, vol. 257, no. 21, pp. 9103–9109, 2011. View at Publisher · View at Google Scholar · View at Scopus
  186. D. Jing, Y. Zhang, and L. Guo, “Study on the synthesis of Ni doped mesoporous TiO2 and its photocatalytic activity for hydrogen evolution in aqueous methanol solution,” Chemical Physics Letters, vol. 415, no. 1–3, pp. 74–78, 2005. View at Publisher · View at Google Scholar · View at Scopus
  187. J. Nair, P. Nair, F. Mizukami, Y. Oosawa, and T. Okubo, “Microstructure and phase transformation behavior of doped nanostructured titania,” Materials Research Bulletin, vol. 34, no. 8, pp. 1275–1290, 1999. View at Publisher · View at Google Scholar · View at Scopus
  188. S. S. Samal, P. Jeyaraman, and V. Vishwakarma, “Sonochemical coating of Ag-TiO2 nanoparticles on textile fabrics for stain repellency and self-cleaning—the Indian scenario: a review,” Journal of Minerals and Materials Characterization and Engineering, vol. 9, no. 6, pp. 519–525, 2010. View at Publisher · View at Google Scholar
  189. M. Takahashi, K. Mita, H. Toyuki, and M. Kume, “Pt-TiO2 thin films on glass substrates as efficient photocatalysts,” Journal of Materials Science, vol. 24, no. 1, pp. 243–246, 1989. View at Publisher · View at Google Scholar · View at Scopus
  190. A. Towata, Y. Uwamino, M. Sando, K. Iseda, and H. Taoda, “Synthesis of titania photocatalysts dispersed with nickel nanosized particles,” Nanostructured Materials, vol. 10, no. 6, pp. 1033–1042, 1998. View at Publisher · View at Google Scholar · View at Scopus
  191. T. Umebayashi, T. Yamaki, H. Itoh, and K. Asai, “Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations,” Journal of Physics and Chemistry of Solids, vol. 63, no. 10, pp. 1909–1920, 2002. View at Publisher · View at Google Scholar · View at Scopus
  192. N. Serpone, D. Lawless, J. Disdier, and J.-M. Herrmann, “Spectroscopic, photoconductivity, and photocatalytic studies of TiO2 colloids. Naked and with the lattice doped with Cr3+, Fe3+, and V5+ cations,” Langmuir, vol. 10, no. 3, pp. 643–652, 1994. View at Publisher · View at Google Scholar · View at Scopus
  193. E. Stathatos, T. Petrova, and P. Lianos, “Study of the efficiency of visible-light photocatalytic degradation of basic blue adsorbed on pure and doped mesoporous titania films,” Langmuir, vol. 17, no. 16, pp. 5025–5030, 2001. View at Publisher · View at Google Scholar · View at Scopus
  194. M. Stir, R. Nicula, and E. Burkel, “Pressure-temperature phase diagrams of pure and Ag-doped nanocrystalline TiO2 photocatalysts,” Journal of the European Ceramic Society, vol. 26, no. 9, pp. 1547–1553, 2006. View at Publisher · View at Google Scholar · View at Scopus
  195. Y. Ao, J. Xu, D. Fu, and C. Yuan, “Preparation of Ag-doped mesoporous titania and its enhanced photocatalytic activity under UV light irradiation,” Journal of Physics and Chemistry of Solids, vol. 69, no. 11, pp. 2660–2664, 2008. View at Publisher · View at Google Scholar · View at Scopus
  196. C. Burda, Y. Lou, X. Chen, A. C. S. Samia, J. Stout, and J. L. Gole, “Enhanced nitrogen doping in TiO2 nanoparticles,” Nano Letters, vol. 3, no. 8, pp. 1049–1051, 2003. View at Publisher · View at Google Scholar · View at Scopus
  197. S. S. Srinivasan, J. Wade, E. K. Stefanakos, and Y. Goswami, “Synergistic effects of sulfation and co-doping on the visible light photocatalysis of TiO2,” Journal of Alloys and Compounds, vol. 424, no. 1-2, pp. 322–326, 2006. View at Publisher · View at Google Scholar · View at Scopus
  198. L. Lin, W. Lin, Y. X. Zhu et al., “Uniform carbon-covered titania and its photocatalytic property,” Journal of Molecular Catalysis A: Chemical, vol. 236, no. 1-2, pp. 46–53, 2005. View at Publisher · View at Google Scholar · View at Scopus
  199. Y. Ao, J. Xu, D. Fu, and C. Yuan, “Synthesis of C,N,S-tridoped mesoporous titania with enhanced visible light-induced photocatalytic activity,” Microporous and Mesoporous Materials, vol. 122, no. 1–3, pp. 1–6, 2009. View at Publisher · View at Google Scholar · View at Scopus
  200. J.-A. He, R. Mosurkal, L. A. Samuelson, L. Li, and J. Kumar, “Dye-sensitized solar cell fabricated by electrostatic layer-by-layer assembly of amphoteric TiO2 nanoparticles,” Langmuir, vol. 19, no. 6, pp. 2169–2174, 2003. View at Publisher · View at Google Scholar · View at Scopus
  201. M. Sorescu and T. Xu, “The effect of ball-milling on the thermal behavior of anatase-doped hematite ceramic system,” Journal of Thermal Analysis and Calorimetry, vol. 103, no. 2, pp. 479–484, 2011. View at Publisher · View at Google Scholar · View at Scopus
  202. A. A. Ismail, I. A. Ibrahim, M. S. Ahmed, R. M. Mohamed, and H. El-Shall, “Sol–gel synthesis of titania–silica photocatalyst for cyanide photodegradation,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 163, no. 3, pp. 445–451, 2004. View at Publisher · View at Google Scholar · View at Scopus
  203. D. Beydoun, R. Amal, G. Low, and S. McEvoy, “Occurrence and prevention of photodissolution at the phase junction of magnetite and titanium dioxide,” Journal of Molecular Catalysis A: Chemical, vol. 180, no. 1-2, pp. 193–200, 2002. View at Publisher · View at Google Scholar · View at Scopus
  204. J. C. Yu, J. Lin, and R. W. M. Kwok, “Enhanced photocatalytic activity of Ti1-xVxO2 solid solution on the degradation of acetone,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 111, no. 1–3, pp. 199–203, 1997. View at Publisher · View at Google Scholar · View at Scopus
  205. D. Han, Y. Li, and W. Jia, “Preparation and characterization of molecularly imprinted SiO2-TiO2 and photo-catalysis for 2, 4-dichlorophenol,” Advanced Materials Letters, vol. 1, no. 3, pp. 188–192, 2010. View at Publisher · View at Google Scholar · View at Scopus
  206. A. Ulgen and W. F. Hoelderich, “Conversion of glycerol to acrolein in the presence of WO3/TiO2 catalysts,” Applied Catalysis A: General, vol. 400, no. 1-2, pp. 34–38, 2011. View at Publisher · View at Google Scholar · View at Scopus
  207. K. T. Ranjit, H. Cohen, I. Willner, S. Bossmann, and A. M. Braun, “Lanthanide oxide-doped titanium dioxide: effective photocatalysts for the degradation of organic pollutants,” Journal of Materials Science, vol. 34, no. 21, pp. 5273–5280, 1999. View at Publisher · View at Google Scholar · View at Scopus
  208. L. Chen, X. Pang, G. Yu, and J. Zhang, “In-situ coating of MWNTs with sol-gel TiO2 nanoparticles,” Advanced Materials Letters, vol. 1, no. 1, pp. 75–78, 2010. View at Publisher · View at Google Scholar
  209. L. H. Huang, C. Sun, and Y. L. Liu, “Pt/N-codoped TiO2 nanotubes and its photocatalytic activity under visible light,” Applied Surface Science, vol. 253, no. 17, pp. 7029–7035, 2007. View at Publisher · View at Google Scholar · View at Scopus
  210. J. Matos, J. Laine, and J.-M. Herrmann, “Synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon,” Applied Catalysis B: Environmental, vol. 18, no. 3-4, pp. 281–291, 1998. View at Publisher · View at Google Scholar · View at Scopus
  211. M. A. Nawi, A. H. Jawad, S. Sabar, and W. S. W. Ngah, “Immobilized bilayer TiO2/chitosan system for the removal of phenol under irradiation by a 45watt compact fluorescent lamp,” Desalination, vol. 280, no. 1–3, pp. 288–296, 2011. View at Publisher · View at Google Scholar · View at Scopus
  212. B. Tryba, A. W. Morawski, and M. A. Inagaki, “A new route for preparation of TiO2-mounted activated carbon,” Applied Catalysis B: Environmental, vol. 46, no. 1, pp. 203–208, 2003. View at Publisher · View at Google Scholar · View at Scopus
  213. T. Tsumura, N. Kojitani, H. Umemura, M. Toyoda, and M. Inagaki, “Composites between photoactive anatase-type TiO2 and adsorptive carbon,” Applied Surface Science, vol. 196, no. 1–4, pp. 429–436, 2002. View at Publisher · View at Google Scholar · View at Scopus
  214. J. Yu, X. Zhao, and Q. Zhao, “Effect of film thickness on the grain size and photocatalytic activity of the sol-gel derived nanometer TiO2 thin films,” Journal of Materials Science Letters, vol. 19, no. 12, pp. 1015–1017, 2000. View at Publisher · View at Google Scholar · View at Scopus
  215. W. Yuan, J. Ji, J. Fu, and J. Shen, “A facile method to construct hybrid multilayered films as a strong and multifunctional antibacterial coating,” Journal of Biomedical Materials Research—Part B: Applied Biomaterials, vol. 85, no. 2, pp. 556–563, 2008. View at Publisher · View at Google Scholar · View at Scopus
  216. Y. Lai, H. Zhuang, K. Xie et al., “Fabrication of uniform Ag/TiO2 nanotube array structures with enhanced photoelectrochemical performance,” New Journal of Chemistry, vol. 34, no. 7, pp. 1335–1340, 2010. View at Publisher · View at Google Scholar · View at Scopus
  217. S. Li, I. N. Germanenko, and M. S. El-Shall, “Nanoparticles from the vapor phase: synthesis and characterization of Si, Ge, MoO3, and WO3 nanocrystals,” Journal of Cluster Science, vol. 10, no. 4, pp. 533–547, 1999. View at Publisher · View at Google Scholar
  218. J. Zhao, X. Wang, Y. Kang, X. Xu, and Y. Li, “Photoelectrochemical ativities of W-doped titania nanotube arrays fabricated by anodization,” IEEE Photonics Technology Letters, vol. 20, no. 14, pp. 1213–1215, 2008. View at Publisher · View at Google Scholar · View at Scopus
  219. M. Epifani, A. Helwig, J. Arbiol et al., “TiO2 thin films from titanium butoxide: synthesis, Pt addition, structural stability, microelectronic processing and gas-sensing properties,” Sensors and Actuators B: Chemical, vol. 130, no. 2, pp. 599–608, 2008. View at Publisher · View at Google Scholar · View at Scopus
  220. Y. Li, X. Yu, and Q. Yang, “Fabrication of TiO2 nanotube thin films and their gas sensing properties,” Journal of Sensors, vol. 2009, Article ID 402174, 19 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  221. A. Serra, M. Re, M. Palmisano et al., “Assembly of hybrid silver–titania thin films for gas sensors,” Sensors and Actuators B: Chemical, vol. 145, no. 2, pp. 794–799, 2010. View at Publisher · View at Google Scholar · View at Scopus
  222. M. H. Yaacob, A. Z. Sadek, K. Latham, K. Kalantar-Zadeh, and W. Wlodarski, “Optical H2 sensing performance of anodized nanoporous TiO2 thin films,” Procedia Chemistry, vol. 1, pp. 951–954, 2009. View at Google Scholar
  223. D. Chen and A. K. Ray, “Removal of toxic metal ions from wastewater by semiconductor photocatalysis,” Chemical Engineering Science, vol. 56, no. 4, pp. 1561–1570, 2001. View at Publisher · View at Google Scholar · View at Scopus
  224. D. G. Shchukin, E. A. Ustinovich, D. V. Sviridov, and A. I. Kulak, “Titanium and iron oxide-based magnetic photocatalysts for oxidation of organic compounds and sulfur dioxide,” High Energy Chemistry, vol. 38, no. 3, pp. 167–173, 2004. View at Publisher · View at Google Scholar · View at Scopus
  225. D.-E. Gu, B.-C. Yang, and Y.-D. Hu, “A novel method for preparing V-doped titanium dioxide thin film photocatalysts with high photocatalytic activity under visible light irradiation,” Catalysis Letters, vol. 118, no. 3-4, pp. 254–259, 2007. View at Publisher · View at Google Scholar · View at Scopus
  226. X. Hou, X. Wu, and A. Liu, “Studies on photocatalytic activity of Ag/TiO2 films,” Frontiers of Chemistry in China, vol. 1, no. 4, pp. 402–407, 2006. View at Publisher · View at Google Scholar · View at Scopus
  227. B. Zhao and Y.-W. Chen, “Ag/TiO2 sol prepared by a sol-gel method and its photocatalytic activity,” Journal of Physics and Chemistry of Solids, vol. 72, no. 11, pp. 1312–1318, 2011. View at Publisher · View at Google Scholar · View at Scopus
  228. M. C. Kao, H. Z. Chen, S. L. Young, C. Y. Kung, C. C. Lin, and Z. Y. Hong, “Microstructure and optical properties of tantalum modified TiO2 thin films prepared by the sol-gel process,” Journal of Superconductivity and Novel Magnetism, vol. 23, no. 5, pp. 843–845, 2010. View at Publisher · View at Google Scholar
  229. A. Bai, W. Liang, G. Zheng, and J. Xue, “Preparation and enhanced daylight-induced photo-catalytic activity of transparent C-doped TiO2 thin films,” The Journal of Wuhan University of Technology-Material Science Edition, vol. 25, pp. 738–742, 2010. View at Google Scholar
  230. L. Ge, M. Xu, and H. Fang, “Synthesis and characterization of the Pd/InVO4-TiO2 co-doped thin films with visible light photocatalytic activities,” Applied Surface Science, vol. 253, no. 4, pp. 2257–2263, 2006. View at Publisher · View at Google Scholar · View at Scopus
  231. J. Yu, J. C. Yu, B. Cheng, and X. Zhao, “Photocatalytic activity and characterization of the sol-gel derived Pb-doped TiO2 thin films,” Journal of Sol-Gel Science and Technology, vol. 24, no. 1, pp. 39–48, 2002. View at Publisher · View at Google Scholar · View at Scopus
  232. N. S. Begum, H. M. F. Ahmed, and K. R. Gunashekar, “Effects of Ni doping on photocatalytic activity of TiO2 thin films prepared by liquid phase deposition technique,” Bulletin of Materials Science, vol. 31, no. 5, pp. 747–751, 2008. View at Publisher · View at Google Scholar · View at Scopus
  233. F. Meng, X. Song, and Z. Sun, “Photocatalytic activity of TiO2 thin films deposited by RF magnetron sputtering,” Vacuum, vol. 83, no. 9, pp. 1147–1151, 2009. View at Publisher · View at Google Scholar · View at Scopus
  234. C. Zhang, R. Chen, J. Zhou, J. Cheng, and Q. Xia, “Synthesis of TiO2 films on glass slides by the sol-gel method and their photocatalytic activity,” Rare Metals, vol. 28, no. 4, pp. 378–384, 2009. View at Publisher · View at Google Scholar · View at Scopus
  235. Z. He, Z. Yu, H. Miao, G. Tan, and Y. Liu, “Preparation of TiO2 thin film by the LPD method on functionalized organic self-assembled monolayers,” Science in China, Series E: Technological Sciences, vol. 52, no. 1, pp. 137–140, 2009. View at Publisher · View at Google Scholar · View at Scopus
  236. G. A. Battiston, R. Gerbasi, M. Porchia, and A. Marigo, “Influence of substrate on structural properties of TiO2 thin films obtained via MOCVD,” Thin Solid Films, vol. 239, no. 2, pp. 186–191, 1994. View at Publisher · View at Google Scholar · View at Scopus
  237. F. Ren, K. He, Y. Ling, and J. Feng, “Novel fabrication of net-like and flake-like Fe doped TiO2 thin films,” Applied Surface Science, vol. 257, no. 22, pp. 9621–9625, 2011. View at Publisher · View at Google Scholar · View at Scopus
  238. M. Zheng, Y. Shu, J. Sun, and T. Zhang, “Carbon-covered alumina: a superior support of noble metal-like catalysts for hydrazine decomposition,” Catalysis Letters, vol. 121, no. 1-2, pp. 90–96, 2008. View at Publisher · View at Google Scholar · View at Scopus
  239. V. Shashikala, V. Siva Kumar, A. H. Padmasri et al., “Advantages of nano-silver-carbon covered alumina catalyst prepared by electro-chemical method for drinking water purification,” Journal of Molecular Catalysis A: Chemical, vol. 268, no. 1-2, pp. 95–100, 2007. View at Publisher · View at Google Scholar · View at Scopus
  240. D. R. Uhlmann, G. Teowee, and J. Boulton, “The future of sol-gel science and technology,” Journal of Sol-Gel Science and Technology, vol. 8, no. 1–3, pp. 1083–1091, 1997. View at Publisher · View at Google Scholar
  241. J.-X. Wang, L.-X. Wen, Z.-H. Wang, M. Wang, L. Shao, and J.-F. Chen, “Facile synthesis of hollow silica nanotubes and their application as supports for immobilization of silver nanoparticles,” Scripta Materialia, vol. 51, no. 11, pp. 1035–1039, 2004. View at Publisher · View at Google Scholar · View at Scopus
  242. T. I. Halkides, D. I. Kondarides, and X. E. Verykios, “Catalytic reduction of NO by C3H6 over Rh/TiO2 catalysts effect of W6+-cation doping of TiO2 on morphological characteristics and catalytic performance,” Applied Catalysis B: Environmental, vol. 41, no. 4, pp. 415–426, 2003. View at Publisher · View at Google Scholar · View at Scopus
  243. N. L. V. Carreño, I. T. S. Garcia, L. S. S. M. Carreño et al., “Synthesis of titania/carbon nanocomposites by polymeric precursor method,” Journal of Physics and Chemistry of Solids, vol. 69, no. 8, pp. 1897–1904, 2008. View at Publisher · View at Google Scholar · View at Scopus
  244. D. Dumitriu, A. R. Bally, C. Ballif et al., “Photocatalytic degradation of phenol by TiO2 thin films prepared by sputtering,” Applied Catalysis B: Environmental, vol. 25, no. 2-3, pp. 83–92, 2000. View at Publisher · View at Google Scholar · View at Scopus
  245. M. Vondrova, T. Klimczuk, V. L. Miller et al., “Supported superparamagnetic Pd/Co alloy nanoparticles prepared from a silica/cyanogel co-gel,” Chemistry of Materials, vol. 17, no. 25, pp. 6216–6218, 2005. View at Publisher · View at Google Scholar · View at Scopus
  246. P. M. Boorman, K. Chong, R. A. Kydd, and J. M. Lewis, “A comparison of alumina, carbon, and carbon-covered alumina as supports for Ni-Mo-F additives: carbon deposition and model compound reaction studies,” Journal of Catalysis, vol. 128, no. 2, pp. 537–550, 1991. View at Publisher · View at Google Scholar
  247. J. P. R. Vissers, F. P. M. Mercx, S. M. A. M. Bouwens, V. H. J. de Beer, and R. Prins, “Carbon-covered alumina as a support for sulfide catalysts,” Journal of Catalysis, vol. 114, no. 2, pp. 291–302, 1988. View at Publisher · View at Google Scholar · View at Scopus
  248. P. M. Boorman and K. Chong, “Preparation of carbon-covered alumina using fluorohydrocarbons. A new acidic support material,” Applied Catalysis A, General, vol. 95, no. 2, pp. 197–210, 1993. View at Publisher · View at Google Scholar · View at Scopus
  249. L. Lin, W. Lin, Y. X. Zhu et al., “Uniformly carbon-covered alumina and its surface characteristics,” Langmuir, vol. 21, no. 11, pp. 5040–5046, 2005. View at Publisher · View at Google Scholar · View at Scopus
  250. M. Błachnio, P. Staszczuk, G. Grodzicka, L. Lin, and Y. X. Zhu, “Adsorption and porosity properties of carbon-covered alumina surfaces,” Journal of Thermal Analysis and Calorimetry, vol. 88, no. 2, pp. 601–606, 2007. View at Publisher · View at Google Scholar · View at Scopus
  251. P. M. Boorman, R. A. Kydd, T. S. Sorensen, K. Chong, J. M. Lewis, and W. S. Bell, “A comparison of alumina, carbon and carbon-covered alumina as supports for NiMoF additives: gas oil hydroprocessing studies,” Fuel, vol. 71, no. 1, pp. 87–93, 1992. View at Publisher · View at Google Scholar · View at Scopus
  252. P. M. Boorman and K. Chong, “A comparative gas oil hydroprocessing study of alumina, carbon, and carbon-covered alumina supported nickel-molybdenum catalysts: effect of quinoline, thiophene, and vanadium spiking,” Energy & Fuels, vol. 6, no. 3, pp. 300–307, 1992. View at Publisher · View at Google Scholar
  253. L. Lin, W. Lin, P. Wang, Y.-X. Zhu, B.-Y. Zhao, and Y.-C. Xie, “Uniform carbon-covered alumina synthesized by pyrolysis of sucrose/γ-Al2O3,” Acta Physico. Chimica Sinica, vol. 20, no. 10, pp. 1179–1181, 2004. View at Google Scholar · View at Scopus
  254. L. F. Sharanda, Y. V. Plyuto, I. V. Babich et al., “Synthesis and characterisation of hybrid carbon-alumina support,” Applied Surface Science, vol. 252, no. 24, pp. 8549–8556, 2006. View at Publisher · View at Google Scholar · View at Scopus
  255. P. Jana and V. Ganesan, “The production of a carbon-coated alumina foam,” Carbon, vol. 49, no. 10, pp. 3292–3298, 2011. View at Publisher · View at Google Scholar · View at Scopus
  256. K. S. R. Rao, P. K. Rao, S. K. Masthan, L. Kaluschnaya, and V. B. Shur, “New type of carbon coated alumina supports for the preparation of highly ctive ruthenium catalysts for ammonia synthesis,” Applied Catalysis, vol. 62, no. 1, pp. L19–L22, 1990. View at Publisher · View at Google Scholar · View at Scopus
  257. Y. Zhu, X. Pan, and Y. Xie, “Dispersion of sucrose on the surface of alumina,” Acta Physico—Chimica Sinica, vol. 15, no. 9, pp. 830–833, 1999. View at Google Scholar · View at Scopus
  258. S. K. Maity, L. Flores, J. Ancheyta, and H. Fukuyama, “Carbon-modified alumina and alumina-carbon-supported hydrotreating catalysts,” Industrial and Engineering Chemistry Research, vol. 48, no. 3, pp. 1190–1195, 2009. View at Publisher · View at Google Scholar · View at Scopus
  259. D. B. Murphy, R. W. Carroll, and J. E. Klonowski, “Analysis of products of high-temperature pyrolysis of various hydrocarbons,” Carbon, vol. 35, no. 12, pp. 1819–1823, 1997. View at Publisher · View at Google Scholar · View at Scopus
  260. C. Paek, A. V. McCormick, and P. W. Carr, “Preparation and evaluation of carbon coated alumina as a high surface area packing material for high performance liquid chromatography,” Journal of Chromatography A, vol. 1217, no. 42, pp. 6475–6483, 2010. View at Publisher · View at Google Scholar · View at Scopus
  261. L. F. Sharanda, Y. V. Plyuto, I. V. Babich, Y. A. Babich, and J. A. Moulijn, “Preparation of carbon-coated alumina by pyrolysis of adsorbed acetylacetone,” Mendeleev Communications, vol. 9, no. 3, pp. 95–96, 1999. View at Google Scholar · View at Scopus
  262. S. K. Masthan, P. S. S. Prasad, K. S. R. Rao, and P. K. Rao, “Hysteresis during ammonia synthesis over promoted ruthenium catalysts supported on carbon-covered alumina,” Journal of Molecular Catalysis, vol. 67, no. 2, pp. L1–L5, 1991. View at Publisher · View at Google Scholar · View at Scopus
  263. M. M. Mahlambi, A. K. Mishra, S. B. Mishra, R. W. Krause, B. B. Mamba, and A. M. Raichur, “Synthesis and characterization of carbon-covered alumina (CCA) supported TiO2 nanocatalysts with enhanced visible light photodegradation of Rhodamine B,” Journal of Nanoparticle Research, vol. 14, article 790, 2012. View at Publisher · View at Google Scholar · View at Scopus
  264. J. Medina-Valtierra, J. García-Servín, C. Frausto-Reyes, and S. Calixto, “The photocatalytic application and regeneration of anatase thin films with embedded commercial TiO2 particles deposited on glass microrods,” Applied Surface Science, vol. 252, no. 10, pp. 3600–3608, 2006. View at Publisher · View at Google Scholar · View at Scopus
  265. S.-Y. Lin, Y.-C. Chen, C.-M. Wang, and C.-C. Liu, “Effect of heat treatment on electrochromic properties of TiO2 thin films,” Journal of Solid State Electrochemistry, vol. 12, no. 11, pp. 1481–1486, 2008. View at Publisher · View at Google Scholar · View at Scopus
  266. D. J. Kim, D. S. Kim, S. Cho, S. W. Kim, S. H. Lee, and J. C. Kim, “Measurement of thermal conductivity of TiO2 thin films using 3ω method,” International Journal of Thermophysics, vol. 25, no. 1, pp. 281–289, 2004. View at Publisher · View at Google Scholar · View at Scopus
  267. B. R. Sankapal, M. C. Lux-Steiner, and A. Ennaoui, “Synthesis and characterization of anatase-TiO2 thin films,” Applied Surface Science, vol. 239, no. 2, pp. 165–170, 2005. View at Publisher · View at Google Scholar · View at Scopus
  268. C. Sarantopoulos, A. N. Gleizes, and F. Maury, “Chemical vapor deposition and characterization of nitrogen doped TiO2 thin films on glass substrates,” Thin Solid Films, vol. 518, no. 4, pp. 1299–1303, 2009. View at Publisher · View at Google Scholar · View at Scopus
  269. L. Sedláková, M. Horáková, P. Hájková, A. Kolouch, J. Karásek, and P. Špatenka, “Photocatalytic properties of titanium oxide-based films deposited by PECVD,” Journal of Superhard Materials, vol. 29, no. 3, pp. 162–165, 2007. View at Publisher · View at Google Scholar
  270. C. R. Kleijn, R. Dorsman, K. J. Kuijlaars, M. Okkerse, and H. van Santen, “Multi-scale modeling of chemical vapor deposition processes for thin film technology,” Journal of Crystal Growth, vol. 303, no. 1, pp. 362–380, 2007. View at Publisher · View at Google Scholar · View at Scopus
  271. H. Y. Ha, S. W. Nam, T. H. Lim, I.-H. Oh, and S.-A. Hong, “Properties of the TiO2 membranes prepared by CVD of titanium tetraisopropoxide,” Journal of Membrane Science, vol. 111, no. 1, pp. 81–92, 1996. View at Publisher · View at Google Scholar · View at Scopus
  272. V. G. Bessergenev, I. V. Khmelinskii, R. J. F. Pereira, V. V. Krisuk, A. E. Turgambaeva, and I. K. Igumenov, “Preparation of TiO2 films by CVD method and its electrical, structural and optical properties,” Vacuum, vol. 64, no. 3-4, pp. 275–279, 2002. View at Publisher · View at Google Scholar · View at Scopus
  273. K. Kamata, K. Maruyama, S. Amano, and H. Fukazawa, “Rapid formation of TiO2 films by a conventional CVD method,” Journal of Materials Science Letters, vol. 9, no. 3, pp. 316–319, 1990. View at Publisher · View at Google Scholar · View at Scopus
  274. N. S. Begum, H. M. Farveez Ahmed, and O. M. Hussain, “Characterization and photocatalytic activity of boron-doped TiO2 thin films prepared by liquid phase deposition technique,” Bulletin of Materials Science, vol. 31, no. 5, pp. 741–745, 2008. View at Publisher · View at Google Scholar · View at Scopus
  275. S.-Q. Sun, B. Sun, W. Zhang, and D. Wang, “Preparation and antibacterial activity of Ag-TiO2 composite film by liquid phase deposition (LPD) method,” Bulletin of Materials Science, vol. 31, no. 1, pp. 61–66, 2008. View at Publisher · View at Google Scholar · View at Scopus
  276. M. N. Ghazzal, N. Barthen, and N. Chaoui, “Photodegradation kinetics of stearic acid on UV-irradiated titania thin film separately followed by optical microscopy and Fourier transform infrared spectroscopy,” Applied Catalysis B: Environmental, vol. 103, no. 1-2, pp. 85–90, 2011. View at Publisher · View at Google Scholar · View at Scopus
  277. B. J. Brasjen, A. W. V. Cuijk, and A. A. Darhuber, “Dip-coating of chemically patterned surfaces,” Chemical Engineering and Processing, vol. 50, no. 5-6, pp. 565–568, 2011. View at Publisher · View at Google Scholar · View at Scopus
  278. N. Negishi, K. Takeuchi, and T. Ibusuki, “Surface structure of the TiO2 thin film photocatalyst,” Journal of Materials Science, vol. 33, no. 24, pp. 5789–5794, 1998. View at Publisher · View at Google Scholar · View at Scopus
  279. R. Bayón, G. San Vicente, C. Maffiotte, and Á. Morales, “Characterization of copper-manganese-oxide thin films deposited by dip-coating,” Solar Energy Materials and Solar Cells, vol. 92, no. 10, pp. 1211–1216, 2008. View at Publisher · View at Google Scholar · View at Scopus
  280. Z. Wang, K. Sun, S. Shen, N. Zhang, J. Qiao, and P. Xu, “Preparation of YSZ thin films for intermediate temperature solid oxide fuel cells by dip-coating method,” Journal of Membrane Science, vol. 320, no. 1-2, pp. 500–504, 2008. View at Publisher · View at Google Scholar · View at Scopus
  281. A. Nakaruk and C. C. Sorrell, “Conceptual model for spray pyrolysis mechanism: fabrication and annealing of titania thin films,” Journal of Coatings Technology Research, vol. 7, no. 5, pp. 665–676, 2010. View at Publisher · View at Google Scholar · View at Scopus
  282. M. Okuya, K. Nakade, and S. Kaneko, “Porous TiO2 thin films synthesized by a spray pyrolysis deposition (SPD) technique and their application to dye-sensitized solar cells,” Solar Energy Materials and Solar Cells, vol. 70, no. 4, pp. 425–435, 2002. View at Publisher · View at Google Scholar · View at Scopus
  283. M. Okuya, K. Shiozaki, N. Horikawa et al., “Porous TiO2 thin films prepared by spray pyrolysis deposition (SPD) technique and their application to UV sensors,” Solid State Ionics, vol. 172, no. 1–4, pp. 527–531, 2004. View at Publisher · View at Google Scholar · View at Scopus
  284. B.-H. Kim, J.-Y. Lee, Y.-H. Choa, M. Higuchi, and N. Mizutani, “Preparation of TiO2 thin film by liquid sprayed mist CVD method,” Materials Science and Engineering: B, vol. 107, no. 3, pp. 289–294, 2004. View at Publisher · View at Google Scholar · View at Scopus
  285. D. R. Acosta, A. I. Martinez, A. A. Lopez, and C. R. Magana, “Titanium dioxide thin films: the effect of the preparation method in their photocatalytic properties,” Microscopy, vol. 228, pp. 183–188, 2005. View at Google Scholar
  286. L. Castañeda, A. Maldonado, and M. de la L. Olvera, “Sensing properties of chemically sprayed TiO2 thin films using Ni, Ir, and Rh as catalysts,” Sensors and Actuators B: Chemical, vol. 133, no. 2, pp. 687–693, 2008. View at Publisher · View at Google Scholar · View at Scopus
  287. R. S. Sonawane and M. K. Dongare, “Sol-gel synthesis of Au/TiO2 thin films for photocatalytic degradation of phenol in sunlight,” Journal of Molecular Catalysis A: Chemical, vol. 243, no. 1, pp. 68–76, 2006. View at Publisher · View at Google Scholar · View at Scopus
  288. L. Sun, T. An, S. Wan et al., “Effect of synthesis conditions on photocatalytic activities of nanoparticulate TiO2 thin films,” Separation and Purification Technology, vol. 68, no. 1, pp. 83–89, 2009. View at Publisher · View at Google Scholar · View at Scopus
  289. M. Vishwas, S. K. Sharma, K. N. Rao, S. Mohan, K. V. A. Gowda, and R. P. S. Chakradhar, “Influence of surfactant and annealing temperature on optical properties of sol-gel derived nano-crystalline TiO2 thin films,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 75, no. 3, pp. 1073–1077, 2010. View at Publisher · View at Google Scholar · View at Scopus
  290. R. Zanoni, G. Righini, A. Montenero et al., “XPS analysis of sol-gel processed doped and undoped TiO2 films for sensors,” Surface and Interface Analysis, vol. 22, no. 1, pp. 376–379, 1994. View at Publisher · View at Google Scholar · View at Scopus
  291. Y. Guo, W. Geng, and J. Sun, “Layer-by-layer deposition of polyelectrolyte-polyelectrolyte complexes for multilayer film fabrication,” Langmuir, vol. 25, no. 2, pp. 1004–1010, 2009. View at Publisher · View at Google Scholar · View at Scopus
  292. G. Decher, J. D. Hong, and J. Schmitt, “Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces,” Thin Solid Films, vol. 210-211, no. 2, pp. 831–835, 1992. View at Publisher · View at Google Scholar · View at Scopus
  293. T.-H. Kim and B.-H. Sohn, “Photocatalytic thin films containing TiO2 nanoparticles by the layer-by-layer self-assembling method,” Applied Surface Science, vol. 201, no. 1–4, pp. 109–114, 2002. View at Publisher · View at Google Scholar · View at Scopus
  294. H. Ai, S. A. Jones, and Y. M. Lvov, “Biomedical applications of electrostatic layer-by-layer nano-assembly of polymers, enzymes, and nanoparticles,” Cell Biochemistry and Biophysics, vol. 39, no. 1, pp. 23–43, 2003. View at Publisher · View at Google Scholar · View at Scopus
  295. J. B. Schlenoff and S. T. Dubas, “Mechanism of polyelectrolyte multilayer growth: charge overcompensation and distribution,” Macromolecules, vol. 34, no. 3, pp. 592–598, 2001. View at Publisher · View at Google Scholar · View at Scopus
  296. T. Sasaki, Y. Ebina, T. Tanaka, M. Harada, M. Watanabe, and G. Decher, “Layer-by-layer assembly of titania nanosheet/polycation composite films,” Chemistry of Materials, vol. 13, no. 12, pp. 4661–4667, 2001. View at Publisher · View at Google Scholar · View at Scopus
  297. B. Schoeler, G. Kumaraswamy, and F. Caruso, “Investigation of the influence of polyelectrolyte charge density on the growth of multilayer thin films prepared by the layer-by-layer technique,” Macromolecules, vol. 35, no. 3, pp. 889–897, 2002. View at Publisher · View at Google Scholar · View at Scopus
  298. M. M. De Villiers, D. P. Otto, S. J. Strydom, and Y. M. Lvov, “Introduction to nanocoatings produced by layer-by-layer (LbL) self-assembly,” Advanced Drug Delivery Reviews, vol. 63, no. 9, pp. 701–715, 2011. View at Publisher · View at Google Scholar · View at Scopus
  299. G. Decher, B. Lehr, K. Lowack, Y. Lvov, and J. Schmitt, “New nanocomposite films for biosensors: layer-by-layer adsorbed films of polyelectrolytes, proteins or DNA,” Biosensors and Bioelectronics, vol. 9, no. 9-10, pp. 677–684, 1994. View at Publisher · View at Google Scholar · View at Scopus
  300. N. I. Kovtyukhova, B. R. Martin, J. K. N. Mbindyo, T. E. Mallouk, M. Cabassi, and T. S. Mayer, “Layer-by-layer self-assembly strategy for template synthesis of nanoscale devices,” Materials Science and Engineering C, vol. 19, no. 1-2, pp. 255–262, 2002. View at Publisher · View at Google Scholar · View at Scopus
  301. Y. Liu, Y. Wang, and R. O. Claus, “Layer-by-layer ionic self-assembly of Au colloids into multilayer thin-films with bulk metal conductivity,” Chemical Physics Letters, vol. 298, no. 4–6, pp. 315–319, 1998. View at Publisher · View at Google Scholar · View at Scopus
  302. K. Ariga, J. P. Hill, and Q. Ji, “Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application,” Physical Chemistry Chemical Physics, vol. 9, no. 19, pp. 2319–2340, 2007. View at Publisher · View at Google Scholar · View at Scopus
  303. A. A. Antipov, G. B. Sukhorukov, E. Donath, and H. Möhwald, “Sustained release properties of polyelectrolyte multilayer capsules,” Journal of Physical Chemistry B, vol. 105, no. 12, pp. 2281–2284, 2001. View at Google Scholar · View at Scopus
  304. F. Wang, J. Feng, and C. Gao, “Manipulating the properties of coacervated polyelectrolyte microcapsules by chemical crosslinking,” Colloid and Polymer Science, vol. 286, no. 8-9, pp. 951–957, 2008. View at Publisher · View at Google Scholar · View at Scopus
  305. S. Anandhakumar and A. M. Raichur, “A facile route to synthesize silver nanoparticles in polyelectrolyte capsules,” Colloids and Surfaces B: Biointerfaces, vol. 84, no. 2, pp. 379–383, 2011. View at Publisher · View at Google Scholar · View at Scopus
  306. S. Anandhakumar, M. Debapriya, V. Nagaraja, and A. M. Raichur, “Polyelectrolyte microcapsules for sustained delivery of water-soluble drugs,” Materials Science and Engineering C, vol. 31, no. 2, pp. 342–349, 2011. View at Publisher · View at Google Scholar · View at Scopus
  307. S. Anandhakumar, V. Nagaraja, and A. M. Raichur, “Reversible polyelectrolyte capsules as carriers for protein delivery,” Colloids and Surfaces B: Biointerfaces, vol. 78, no. 2, pp. 266–274, 2010. View at Publisher · View at Google Scholar · View at Scopus
  308. N. A. Kotov, I. Dekany, and J. H. Fendler, “Layer-by-layer self-assembly of polyelectrolyte-semiconductor nanoparticle composite films,” Journal of Physical Chemistry, vol. 99, no. 35, pp. 13065–13069, 1995. View at Publisher · View at Google Scholar · View at Scopus
  309. A. Mollahosseini, A. Rahimpour, M. Jahamshahi, M. Peyravi, and M. Khavarpour, “The effect of silver nanoparticle size on performance and antibacteriality of polysulfone ultrafiltration membrane,” Desalination, vol. 306, pp. 41–50, 2012. View at Publisher · View at Google Scholar · View at Scopus
  310. D. Y. Koseoglu-Imer, B. Kose, M. Altinbas, and I. Koyuncu, “The production of polysulfone (PS) membrane with silver nanoparticles (AgNP): physical properties, filtration performances, and biofouling resistances of membranes,” Journal of Membrane Science, vol. 428, pp. 620–628, 2013. View at Publisher · View at Google Scholar · View at Scopus
  311. Z. Fan, Z. Wang, N. Sun, J. Wang, and S. Wang, “Performance improvement of polysulfone ultrafiltration membrane by blending with polyaniline nanofibers,” Journal of Membrane Science, vol. 320, no. 1-2, pp. 363–371, 2008. View at Publisher · View at Google Scholar · View at Scopus
  312. E. Saljoughi and S. M. Mousavi, “Preparation and characterization of novel polysulfone nanofiltration membranes for removal of cadmium from contaminated water,” Separation and Purification Technology, vol. 90, pp. 22–30, 2012. View at Publisher · View at Google Scholar · View at Scopus
  313. R. J. Wang, Y. Chen, H. M. Xie, G. Q. Kai, Z. Y. Wang, and J. Pan, “Polysaccharide separation mechanism in polysulfone-Fe3O4 magnetic composite membranes,” Chinese Science Bulletin, vol. 56, no. 18, pp. 1951–1956, 2011. View at Publisher · View at Google Scholar · View at Scopus
  314. N. A. A. Hamid, A. F. Ismail, T. Matsuura et al., “Morphological and separation performance study of polysulfone/titanium dioxide (PSF/TiO2) ultrafiltration membranes for humic acid removal,” Desalination, vol. 273, no. 1, pp. 85–92, 2011. View at Publisher · View at Google Scholar · View at Scopus
  315. N. Y. Abu-Thabit, S. A. Ali, and S. M. J. Zaidi, “New highly phosphonated polysulfone membranes for PEM fuel cells,” Journal of Membrane Science, vol. 360, no. 1-2, pp. 26–33, 2010. View at Publisher · View at Google Scholar · View at Scopus
  316. S. Ramaswamy, C. Gopalakrishnan, N. S. Kumar, A. Littleflower, and M. Ponnavaikko, “Fabrication of Ni nanodots templated by nanoporous polysulfone membrane: structural and magnetic properties,” Applied Physics A: Materials Science and Processing, vol. 98, no. 3, pp. 481–485, 2010. View at Publisher · View at Google Scholar · View at Scopus
  317. Y. Devrim, S. Erkan, N. Baç, and I. Eroğlu, “Preparation and characterization of sulfonated polysulfone/titanium dioxide composite membranes for proton exchange membrane fuel cells,” International Journal of Hydrogen Energy, vol. 34, no. 8, pp. 3467–3475, 2009. View at Publisher · View at Google Scholar · View at Scopus
  318. Y. Yang, H. Zhang, P. Wang, Q. Zheng, and J. Li, “The influence of nano-sized TiO2 fillers on the morphologies and properties of PSF UF membrane,” Journal of Membrane Science, vol. 288, no. 1-2, pp. 231–238, 2007. View at Publisher · View at Google Scholar · View at Scopus
  319. M. Padaki, A. M. Isloor, A. F. Ismail, and M. S. Abdullah, “Synthesis, characterization and desalination study of novel PSAB and mPSAB blend membranes with Polysulfone (PSf),” Desalination, vol. 295, pp. 35–42, 2012. View at Publisher · View at Google Scholar · View at Scopus
  320. N. Ghaemi, S. S. Madaeni, A. Alizadeh et al., “Fabrication and modification of polysulfone nanofiltration membrane using organic acids: morphology, characterization and performance in removal of xenobiotics,” Separation and Purification Technology, vol. 96, pp. 214–228, 2012. View at Publisher · View at Google Scholar · View at Scopus
  321. S. Rajesh, S. Senthilkumar, A. Jayalakshmi, M. T. Nirmala, A. F. Ismail, and D. Mohan, “Preparation and performance evaluation of poly (amide-imide) and TiO2 nanoparticles impregnated polysulfone nanofiltration membranes in the removal of humic substances,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 418, pp. 92–104, 2013. View at Publisher · View at Google Scholar · View at Scopus
  322. M. J. Eckelman, M. S. Mauter, J. A. Isaacs, and M. Elimelech, “New perspectives on nanomaterial aquatic ecotoxicity: production impacts exceed direct exposure impacts for carbon nanotoubes,” Environmental Science and Technology, vol. 46, no. 5, pp. 2902–2910, 2012. View at Publisher · View at Google Scholar · View at Scopus
  323. A. Tiraferri, N. Y. Yip, W. A. Phillip, J. D. Schiffman, and M. Elimelech, “Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure,” Journal of Membrane Science, vol. 367, no. 1-2, pp. 340–352, 2011. View at Publisher · View at Google Scholar · View at Scopus
  324. S. Liang, Y. Kang, A. Tiraferri, E. P. Giannelis, X. Huang, and M. Elimelech, “Highly hydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membranes via postfabrication grafting of surface-tailored silica nanoparticles,” ACS Applied Materials and Interfaces, vol. 5, no. 14, pp. 6694–6703, 2013. View at Publisher · View at Google Scholar · View at Scopus
  325. M. S. Mauter, Y. Wang, K. C. Okemgbo, C. O. Osuji, E. P. Giannelis, and M. Elimelech, “Antifouling ultrafiltration membranes via post-fabrication grafting of biocidal nanomaterials,” ACS Applied Materials and Interfaces, vol. 3, no. 8, pp. 2861–2868, 2011. View at Publisher · View at Google Scholar · View at Scopus