Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2015 (2015), Article ID 812061, 6 pages
Research Article

Enhancement in Mode II Interlaminar Fracture Toughness at Cryogenic Temperature of Glass Fiber/Epoxy Composites through Matrix Modification by Carbon Nanotubes and n-Butyl Glycidyl Ether

Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China

Received 12 June 2014; Accepted 27 August 2014

Academic Editor: Cheng Yan

Copyright © 2015 Yu Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


A typical diglycidyl ether of bisphenol-F (DGEBF)/diethyl toluene diamine (DETD) epoxy system modified by multiwalled carbon nanotubes (MWCNTs) and a reactive aliphatic diluent named n-butyl glycidyl ether (BGE) was used as the matrix for glass fiber composites. The glass fiber (GF) reinforced composites based on the unmodified and modified epoxy matrices were prepared by the hand lay-up hot-press process. Mode II interlaminar fracture toughness at both room temperature (RT) and cryogenic temperature (77 K) of the GF reinforced epoxy composites was investigated to examine the effect of the matrix modification. The result showed that the introduction of MWCNTs and BGE at their previously reported optimal contents led to the remarkable enhancement in mode II interlaminar fracture toughness of the composites. Namely, the 22.9% enhancement at RT and the 31.4% enhancement at 77 K were observed for mode II interlaminar fracture toughness of the fiber composite based on the optimally modified epoxy matrix by MWCNTs and BGE compared to the unmodified case.