Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2015 (2015), Article ID 912104, 8 pages
http://dx.doi.org/10.1155/2015/912104
Research Article

Catalytic Hydrodechlorination of Trichlorobenzenes with Pd(Phen)Cl2 as Catalyst Precursor

1Research Institute of Applied Catalysis, School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
2School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China

Received 11 November 2014; Revised 30 December 2014; Accepted 31 December 2014

Academic Editor: Guoran Li

Copyright © 2015 Guanlin Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. L. Kniep, F. Girgsdies, and T. Ressler, “Effect of precipitate aging on the microstructural characteristics of Cu/ZnO catalysts for methanol steam reforming,” Journal of Catalysis, vol. 236, no. 1, pp. 34–44, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. F. J. Urbano and J. M. Marinas, “Hydrogenolysis of organohalogen compounds over palladium supported catalysts,” Journal of Molecular Catalysis A: Chemical, vol. 173, no. 1-2, pp. 329–345, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. M. D. Erickson, S. E. Swanson, J. D. Flora Jr., and G. D. Hinshaw, “Polychlorinated dibenzofurans and other thermal combustion products from dielectric fluids containing polychlorinated biphenyls,” Environmental Science and Technology, vol. 23, no. 4, pp. 462–470, 1989. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Amorim, X. Wang, and M. A. Keane, “Application of hydrodechlorination in environmental pollution control: comparison of the performance of supported and unsupported Pd and Ni catalysts,” Chinese Journal of Catalysis, vol. 32, no. 5, pp. 746–755, 2011. View at Google Scholar · View at Scopus
  5. D. Richard, L. D. Núñez, C. De Bellefon, and D. Schweich, “Depollution of waters contaminated by phenols and chlorophenols using catalytic hydrogenation,” Environmental Chemistry: Green Chemistry and Pollutants in Ecosystems, vol. 14, pp. 601–613, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Calvo, M. A. Gilarranz, J. A. Casas, A. F. Mohedano, and J. J. Rodríguez, “Hydrodechlorination of 4-chlorophenol in aqueous phase using Pd/AC catalysts prepared with modified active carbon supports,” Applied Catalysis B: Environmental, vol. 67, no. 1-2, pp. 68–76, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. N. S. Babu, N. Lingaiah, R. Gopinath, P. S. S. Reddy, and P. S. S. Prasad, “Characterization and reactivity of alumina-supported Pd catalysts for the room-temperature hydrodechlorination of chlorobenzene,” Journal of Physical Chemistry C, vol. 111, no. 17, pp. 6447–6453, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. H.-Y. Wee and J. A. Cunningham, “Palladium-catalyzed hydrodehalogenation of 1,2,4,5-tetrachlorobenzene in water-ethanol mixtures,” Journal of Hazardous Materials, vol. 155, no. 1-2, pp. 1–9, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Yoneda, T. Takido, and K. Konuma, “Hydrodechlorination reactivity of para-substituted chlorobenzenes over platinum/carbon catalyst,” Journal of Molecular Catalysis A: Chemical, vol. 265, no. 1-2, pp. 80–89, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. C. S. Srikanth, V. P. Kumar, B. Viswanadham, and K. V. R. Chary, “Hydrodechlorination of 1,2,4-trichlorbenzene over supported ruthenium catalysts on various supports,” Catalysis Communications, vol. 13, no. 1, pp. 69–72, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. M. A. Keane, C. Park, and C. Menini, “Structure sensitivity in the hydrodechlorination of chlorobenzene over supported nickel,” Catalysis Letters, vol. 88, no. 1-2, pp. 89–94, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. M. A. Keane and R. Larsson, “On the stepwise change of activation energies in the hydrodechlorination of chlorobenzene over supported nickel,” Catalysis Communications, vol. 9, no. 3, pp. 333–336, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. A. M. Zawisza and J. Muzart, “Pd-catalyzed reduction of aryl halides using dimethylformamide as the hydride source,” Tetrahedron Letters, vol. 48, no. 38, pp. 6738–6742, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Zeng, Y. Wang, J. Jiang, and Z. Jin, “Rh nanoparticle catalyzed hydrogenation of olefins in thermoregulated ionic liquid and organic biphase system,” Catalysis Communications, vol. 19, pp. 70–73, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. G. K. Parshetti and R.-A. Doong, “Dechlorination and photodegradation of trichloroethylene by Fe/TiO2 nanocomposites in the presence of nickel ions under anoxic conditions,” Applied Catalysis B: Environmental, vol. 100, no. 1-2, pp. 116–123, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. J. A. Roth, S. R. Dakoji, R. C. Hughes, and R. E. Carmody, “Hydrogenolysis of polychlorinated biphenyls by sodium borohydride with homogeneous and heterogeneous nickel catalysts,” Environmental Science and Technology, vol. 28, no. 1, pp. 80–87, 1994. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Desmarets, S. Kuhl, R. Schneider, and Y. Fort, “Nickel(0)/imidazolium chloride catalyzed reduction of aryl halides,” Organometallics, vol. 21, no. 8, pp. 1554–1559, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Maloney, R. DeVor, S. Novaes-Card et al., “Dechlorination of polychlorinated biphenyls using magnesium and acidified alcohols,” Journal of Hazardous Materials, vol. 187, no. 1–3, pp. 235–240, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Terao, A. Ikumi, H. Kuniyasu, and N. Kambe, “Ni- or Cu-catalyzed cross-coupling reaction of alkyl fluorides with grignard reagents,” Journal of the American Chemical Society, vol. 125, no. 19, pp. 5646–5647, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. F. Alonso, I. P. Beletskaya, and M. Yus, “Metal-mediated reductive hydrodehalogenation of organic halides,” Chemical Reviews, vol. 102, no. 11, pp. 4009–4091, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. K. R. Powell, T. M. McCleskey, W. Tumas, and J. M. DeSimone, “Polymers with multiple ligand sites for metal extractions in dense-phase carbon dioxide,” Industrial and Engineering Chemistry Research, vol. 40, no. 5, pp. 1301–1305, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. X. X. Zhang and E. J. Gao, “The study of bending vibration of aryl rings in palladium ligand complex,” Journal of Shenyang Institute of Chemical Technology, vol. 12, p. 11, 1997. View at Google Scholar
  23. P. C. Nam and M. Nguyen, “Oxidative adduct complex formation through the carbon chloride bond cleavage with palladium,” Journal of Chemical Physics, vol. 109, p. 1034, 2005. View at Google Scholar
  24. H.-J. Wang, Y. Fu, C. Wang, and Q.-X. Guo, “Theoretical study of hemolytic C–Cl bond dissociation enthalpies of environmental pollutants,” Acta Chimica Sinica, vol. 66, no. 3, pp. 362–370, 2008. View at Google Scholar · View at Scopus
  25. Y. R. Luo, Handbook of Bond Dissociation Energies in Organic Compounds, Science Press, Beijing, China, 2005, (Chinese).