Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2015 (2015), Article ID 921903, 9 pages
http://dx.doi.org/10.1155/2015/921903
Research Article

Efficiency Enhanced Colloidal Mn-Doped Type II Core/Shell ZnSe/CdS Quantum Dot Sensitized Hybrid Solar Cells

1Department of Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology (KTH), 106 91 Stockholm, Sweden
2Department of Applied Physics/Bimolecular Physics, School of Science, Royal Institute of Technology (KTH), 106 91 Stockholm, Sweden
3Organic Chemistry, Centre of Molecular Devices, Department of Chemistry, School of Chemical Science and Engineering, Royal Institute of Technology (KTH), 100 44 Stockholm, Sweden

Received 15 June 2015; Revised 16 July 2015; Accepted 2 August 2015

Academic Editor: Jun Chen

Copyright © 2015 A. Jamshidi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Bulović, “Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum,” Nano Letters, vol. 9, no. 7, pp. 2532–2536, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. H. Lee, S. W. Yoon, E. J. Kim, and J. Park, “In-situ growth of copper sulfide nanocrystals on multiwalled carbon nanotubes and their application as novel solar cell and amperometric glucose sensor materials,” Nano Letters, vol. 7, no. 3, pp. 778–784, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. K.-T. Yong, I. Roy, H. Ding, E. J. Bergey, and P. N. Prasad, “Biocompatible near-infrared quantum dots as ultrasensitive probes for long-term in vivo imaging applications,” Small, vol. 5, no. 17, pp. 1997–2004, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Dong, X. Li, and J. Qi, “First-principles investigation on electronic properties of quantum dot-sensitized solar cells based on anatase TiO2 nanotubes,” Journal of Physical Chemistry C, vol. 115, no. 41, pp. 20307–20315, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. F. C. Krebs, S. A. Gevorgyan, and J. Alstrup, “A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies,” Journal of Materials Chemistry, vol. 19, no. 30, pp. 5442–5451, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Helgesen, R. Søndergaard, and F. C. Krebs, “Advanced materials and processes for polymer solar cell devices,” Journal of Materials Chemistry, vol. 20, no. 1, pp. 36–60, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. A. M. Smith and S. Nie, “Semiconductor nanocrystals: structure, properties, and band gap engineering,” Accounts of Chemical Research, vol. 43, no. 2, pp. 190–200, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. B. O'Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, vol. 353, no. 6346, pp. 737–740, 1991. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, and M. K. Nazeeruddin, “Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency,” Science, vol. 334, no. 6056, pp. 629–634, 2011. View at Google Scholar
  10. L.-H. Lai, L. Protesescu, M. V. Kovalenko, and M. A. Loi, “Sensitized solar cells with colloidal PbS-CdS core-shell quantum dots,” Physical Chemistry Chemical Physics, vol. 16, no. 2, pp. 736–742, 2014. View at Publisher · View at Google Scholar · View at Scopus
  11. Z. Ning, H. Tian, C. Yuan et al., “Solar cells sensitized with type-II ZnSe-CdS core/shell colloidal quantum dots,” Chemical Communications, vol. 47, no. 5, pp. 1536–1538, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. X.-Y. Yu, B.-X. Lei, D.-B. Kuang, and C.-Y. Su, “Highly efficient CdTe/CdS quantum dot sensitized solar cells fabricated by a one-step linker assisted chemical bath deposition,” Chemical Science, vol. 2, no. 7, pp. 1396–1400, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Itzhakov, H. Shen, S. Buhbut, H. Lin, and D. Oron, “Type-II quantum-dot-sensitized solar cell spanning the visible and near-infrared spectrum,” Journal of Physical Chemistry C, vol. 117, no. 43, pp. 22203–22210, 2013. View at Publisher · View at Google Scholar · View at Scopus
  14. L. P. Balet, S. A. Ivanov, A. Piryatinski, M. Achermann, and V. I. Klimov, “Inverted core/shell nanocrystals continuously tunable between type-I and type-II localization regimes,” Nano Letters, vol. 4, no. 8, pp. 1485–1488, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Wang, T. Wang, X. Wang et al., “Double-shelled ZnO/CdSe/CdTe nanocable arrays for photovoltaic applications: microstructure evolution and interfacial energy alignment,” Journal of Materials Chemistry, vol. 22, no. 25, pp. 12532–12537, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. S. A. Ivanov, A. Piryatinski, J. Nanda et al., “Type-II core/shell CdS/ZnSe nanocrystals: synthesis, electronic structures, and spectroscopic properties,” Journal of the American Chemical Society, vol. 129, no. 38, pp. 11708–11719, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Cao, C. Hu, W. Shen, S. Wang, Y. Tian, and X. Wang, “Synthesis and characterization of TiO2/CdS core-shell nanorod arrays and their photoelectrochemical property,” Journal of Alloys and Compounds, vol. 523, pp. 139–145, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Danek, K. F. Jensen, C. B. Murray, and M. G. Bawendi, “Synthesis of luminescent thin-film CdSe/ZnSe quantum dot composites using CdSe quantum dots passivated with an overlayer of ZnSe,” Chemistry of Materials, vol. 8, no. 1, pp. 173–180, 1996. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Taniguchi, M. Green, S. B. Rizvi, and A. Seifalian, “The one-pot synthesis of core/shell/shell CdTe/CdSe/ZnSe quantum dots in aqueous media for in vivo deep tissue imaging,” Journal of Materials Chemistry, vol. 21, no. 9, pp. 2877–2882, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. W. Zhang, G. Chen, J. Wang, B.-C. Ye, and X. Zhong, “Design and synthesis of highly luminescent near-infrared-emitting water-soluble CdTe/CdSe/ZnS Core/Shell/Shell quantum dots,” Inorganic Chemistry, vol. 48, no. 20, pp. 9723–9731, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Kim, B. Fisher, H.-J. Eisler, and M. Bawendi, “Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures,” Journal of the American Chemical Society, vol. 125, no. 38, pp. 11466–11467, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Wang, I. Mora-Seró, Z. Pan et al., “Core/shell colloidal quantum dot exciplex states for the development of highly efficient quantum-dot-sensitized solar cells,” Journal of the American Chemical Society, vol. 135, no. 42, pp. 15913–15922, 2013. View at Publisher · View at Google Scholar · View at Scopus
  23. O. Schöps, N. Le Thomas, U. Woggon, and M. V. Artemyev, “Recombination dynamics of CdTe/CdS core-shell nanocrystals,” Journal of Physical Chemistry B, vol. 110, no. 5, pp. 2074–2079, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. M. W. DeGroot, N. J. Taylor, and J. F. Corrigan, “Molecular nanocluster analogues of CdSe/ZnSe and CdTe/ZnTe core/shell nanoparticles,” Journal of Materials Chemistry, vol. 14, no. 4, pp. 654–660, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. C.-T. Cheng, C.-Y. Chen, C.-W. Lai et al., “Syntheses and photophysical properties of type-II CdSe/ZnTe/ZnS (core/shell/shell) quantum dots,” Journal of Materials Chemistry, vol. 15, no. 33, pp. 3409–3414, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. R. G. Xie, X. H. Zhong, and T. Basche, “Synthesis, characterization, and spectroscopy of type-II core/shell semiconductor nanocrystals with ZnTe cores,” Advanced Materials, vol. 17, no. 22, pp. 2741–2745, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Jiao, Q. Shen, I. Mora-Seró et al., “Band engineering in core/shell ZnTe/cdse for photovoltage and efficiency enhancement in exciplex quantum dot sensitized solar cells,” ACS Nano, vol. 9, no. 1, pp. 908–915, 2015. View at Publisher · View at Google Scholar · View at Scopus
  28. Z. Pan, H. Zhang, K. Cheng, Y. Hou, J. Hua, and X. Zhong, “Highly efficient inverted type-I CdS/CdSe core/shell structure QD-sensitized solar cells,” ACS Nano, vol. 6, no. 5, pp. 3982–3991, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Nemchinov, M. Kirsanova, N. N. Hewa-Kasakarage, and M. Zamkov, “Synthesis and characterization of type II ZnSe/CdS core/shell nanocrystals,” Journal of Physical Chemistry C, vol. 112, no. 25, pp. 9301–9307, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. Hinuma, A. Grüneis, G. Kresse, and F. Oba, “Band alignment of semiconductors from density-functional theory and many-body perturbation theory,” Physical Review B, vol. 90, Article ID 155405, 2014. View at Publisher · View at Google Scholar · View at Scopus
  31. D. T. F. Marple, “Electron effective mass in ZnSe,” Journal of Applied Physics, vol. 35, no. 6, pp. 1879–1882, 1964. View at Publisher · View at Google Scholar · View at Scopus
  32. H. E. Ruda, “A theoretical analysis of electron transport in ZnSe,” Journal of Applied Physics, vol. 59, no. 4, pp. 1220–1231, 1986. View at Publisher · View at Google Scholar · View at Scopus
  33. P. Patil, C. Laltlanzuala, and S. Datta, “Sensitized solar cell from type-II CdTe/CdSe core/shell nanocrystals synthesized without seed purification at low temperature,” Journal of Alloys and Compounds, vol. 607, pp. 230–237, 2014. View at Publisher · View at Google Scholar · View at Scopus
  34. D. C. J. Neo, C. Cheng, S. D. Stranks et al., “Influence of shell thickness and surface passivation on PbS/CdS Core/Shell colloidal quantum dot solar cells,” Chemistry of Materials, vol. 26, no. 13, pp. 4004–4013, 2014. View at Publisher · View at Google Scholar · View at Scopus
  35. X. Qi, X. Zou, and S. He, “La doping of CdS for enhanced CdS/CdSe quantum dot cosensitized solar cells,” Journal of Chemistry, vol. 2015, Article ID 710140, 7 pages, 2015. View at Publisher · View at Google Scholar
  36. P. K. Santra and P. V. Kamat, “Mn-doped quantum dot sensitized solar cells: a strategy to boost efficiency over 5%,” Journal of the American Chemical Society, vol. 134, no. 5, pp. 2508–2511, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. P. Wu, J.-B. Pan, X.-L. Li, X. Hou, J.-J. Xu, and H.-Y. Chen, “Long-lived charge carriers in mn-doped CdS quantum dots for photoelectrochemical cytosensing,” Chemistry—A European Journal, vol. 21, no. 13, pp. 5129–5135, 2015. View at Publisher · View at Google Scholar · View at Scopus
  38. R. Beaulac, P. I. Archer, and D. R. Gamelin, “Luminescence in colloidal Mn2+-doped semiconductor nanocrystals,” Journal of Solid State Chemistry, vol. 181, no. 7, pp. 1582–1589, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. V. A. Vlaskin, N. Janssen, J. van Rijssel, R. Beaulac, and D. R. Gamelin, “Tunable dual emission in doped semiconductor nanocrystals,” Nano Letters, vol. 10, no. 9, pp. 3670–3674, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. R. Beaulac, P. I. Archer, X. Liu et al., “Spin-polarizable excitonic luminescence in colloidal Mn2+-doped CdSe quantum dots,” Nano Letters, vol. 8, no. 4, pp. 1197–1201, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. R. Beaulac, P. I. Archer, J. Van Rijssel, A. Meijerink, and D. R. Gamelin, “Exciton storage by Mn2+ in colloidal Mn2+-Doped CdSe quantum dots,” Nano Letters, vol. 8, no. 9, pp. 2949–2953, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. A. A. Bol and A. Meijerink, “Long-lived Mn2+ emission in nanocrystalline ZnS:Mn2+,” Physical Review B—Condensed Matter and Materials Physics, vol. 58, no. 24, Article ID R15997, 1998. View at Publisher · View at Google Scholar · View at Scopus
  43. J. F. Liu, D. D. Cannon, K. Wada et al., “Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications,” Applied Physics Letters, vol. 87, no. 1, Article ID 011110, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. J. Wang, W. Y. Loh, H. Zang et al., “Integration of tensile-strained Ge p-i-n photodetector on advanced CMOS platform,” in Proceedings of the 4th International Conference on Group IV Photonics (GFP '07), pp. 52–54, September 2007. View at Scopus
  45. A. Jamshidi, M. Noroozi, M. Moeen et al., “Growth of GeSnSiC layers for photonic applications,” Surface & Coatings Technology, vol. 230, pp. 106–110, 2013. View at Publisher · View at Google Scholar · View at Scopus
  46. J. Tang, K. W. Kemp, S. Hoogland et al., “Colloidal-quantum-dot photovoltaics using atomic-ligand passivation,” Nature Materials, vol. 10, no. 10, pp. 765–771, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. F. Gong, H. Wang, X. Xu, G. Zhou, and Z.-S. Wang, “In situ gowth of Co0.85Se and Ni0.85Se on conductive substrates as high-performance counter electrodes for dye-sensitized solar cells,” Journal of the American Chemical Society, vol. 134, no. 26, pp. 10953–10958, 2012. View at Publisher · View at Google Scholar · View at Scopus
  48. C. Steinhagen, T. B. Harvey, C. J. Stolle, J. Harris, and B. A. Korgel, “Pyrite nanocrystal solar cells: promising, or fool's gold?” Journal of Physical Chemistry Letters, vol. 3, no. 17, pp. 2352–2356, 2012. View at Publisher · View at Google Scholar · View at Scopus
  49. R. Sahraei, G. M. Aval, and A. Goudarzi, “Compositional, structural, and optical study of nanocrystalline ZnS thin films prepared by a new chemical bath deposition route,” Journal of Alloys and Compounds, vol. 466, no. 1-2, pp. 488–492, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. H. R. Dizaji, A. J. Zavaraki, and M. H. Ehsani, “Effect of thickness on the structural and optical properties of ZnS thin films prepared by flash evaporation technique equipped with modified feeder,” Chalcogenide Letters, vol. 8, no. 4, pp. 231–237, 2011. View at Google Scholar · View at Scopus
  51. M. Liu, L. Zhang, X. He et al., “L-cystine-assisted hydrothermal synthesis of Mn1−xCdxs solid solutions with hexagonal wurtzite structure for efficient photocatalytic hydrogen evolution under visible light irradiation,” Journal of Materials Chemistry A, vol. 2, no. 13, pp. 4619–4626, 2014. View at Publisher · View at Google Scholar
  52. R. Chauhan, A. Kumar, and R. P. Chaudhary, “Synthesis, structural and photocatalytic studies of Mn-doped CdS nanoparticles,” Research on Chemical Intermediates, vol. 39, no. 2, pp. 645–657, 2013. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Elango, K. Gopalakrishnan, S. Vairam, and M. Thamilselvan, “Structural, optical and magnetic studies on non-aqueous synthesized CdS:Mn nanomaterials,” Journal of Alloys and Compounds, vol. 538, pp. 48–55, 2012. View at Publisher · View at Google Scholar · View at Scopus
  54. H. Zhai, L. Cao, G. Su, W. Liu, and B. Dong, “Synthesis, structural and optical properties of water-soluble Mn-doped CdS nanocrystals,” Micro and Nano Letters, vol. 6, no. 4, pp. 257–260, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. F. M. Bufler, P. Graf, S. Keith, and B. Meinerzhagen, “Full band Monte Carlo investigation of electron transport in strained Si grown on Si1-xGex substrates,” Applied Physics Letters, vol. 70, no. 16, pp. 2144–2146, 1997. View at Publisher · View at Google Scholar · View at Scopus
  56. P. Dollfus, S. Galdin, and P. Hesto, “Monte-Carlo investigation of in-plane electron transport in tensile strained Si and Si1−YCy (Y ≤ 0.03),” European Physical Journal-Applied Physics, vol. 7, no. 1, pp. 73–77, 1999. View at Google Scholar
  57. T. Ido, “Energy bandgap and lattice constant contours of II–VI quaternary alloys,” Journal of Electronic Materials, vol. 9, no. 5, pp. 869–882, 1980. View at Publisher · View at Google Scholar · View at Scopus
  58. Y. G. Wang, Q. L. Zhang, T. H. Wang, W. Han, and S. X. Zhou, “Improvement of electron transport in a ZnSe nanowire by in situ strain,” Journal of Physics D: Applied Physics, vol. 44, no. 12, Article ID 125301, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. I. Mora-Seró, S. Giménez, F. Fabregat-Santiago et al., “Recombination in quantum dot sensitized solar cells,” Accounts of Chemical Research, vol. 42, no. 11, pp. 1848–1857, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. N. Guijarro, J. M. Campiña, Q. Shen, T. Toyoda, T. Lana-Villarreal, and R. Gómez, “Uncovering the role of the ZnS treatment in the performance of quantum dot sensitized solar cells,” Physical Chemistry Chemical Physics, vol. 13, no. 25, pp. 12024–12032, 2011. View at Publisher · View at Google Scholar · View at Scopus
  61. K. M. Yu, W. Walukiewicz, T. Wojtowicz et al., “Effect of the location of Mn sites in ferromagnetic Ga1−xMnxAs on its Curie temperature,” Physical Review B, vol. 65, no. 20, Article ID 201303, 2002. View at Publisher · View at Google Scholar
  62. M. Grätzel, “Solar energy conversion by dye-sensitized photovoltaic cells,” Inorganic Chemistry, vol. 44, no. 20, pp. 6841–6851, 2005. View at Publisher · View at Google Scholar · View at Scopus
  63. D. R. James, Y.-S. Liu, P. De Mayo, and W. R. Ware, “Distributions of fluorescence lifetimes: consequences for the photophysics of molecules adsorbed on surfaces,” Chemical Physics Letters, vol. 120, no. 4-5, pp. 460–465, 1985. View at Publisher · View at Google Scholar · View at Scopus
  64. A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, and P. V. Kamat, “Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture,” Journal of the American Chemical Society, vol. 130, no. 12, pp. 4007–4015, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. Z. Ning, H. Tian, H. Qin et al., “Wave-function engineering of CdSE/CdS core/shell quantum dots for enhanced electron transfer to a TiO2 Substrate,” The Journal of Physical Chemistry C, vol. 114, no. 35, pp. 15184–15189, 2010. View at Publisher · View at Google Scholar · View at Scopus