Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2016, Article ID 1637091, 9 pages
http://dx.doi.org/10.1155/2016/1637091
Research Article

Synthesis of FeNi Alloy Nanomaterials by Proteic Sol-Gel Method: Crystallographic, Morphological, and Magnetic Properties

1Laboratório de Raios X, Departamento de Física, Universidade Federal do Ceará, 60455-970 Fortaleza, CE, Brazil
2Programa de Pós-Graduação em Ciência e Tecnologia de Materiais, Universidade Estadual Paulista, 17033-360 Bauru, SP, Brazil
3Laboratório de Magnetismo e Materiais Magnéticos, Departamento de Engenharia Metalúrgica e de Materiais, Universidade Federal do Ceará, 60440-554 Fortaleza, CE, Brazil
4Laboratório de Peneiras Moleculares, Instituto de Química, Universidade Federal do Rio Grande do Norte, 59078-970 Natal, RN, Brazil
5Departamento de Física, Universidade do Estado do Rio Grande do Norte, 59625-620 Mossoró, RN, Brazil

Received 4 July 2016; Revised 24 October 2016; Accepted 27 October 2016

Academic Editor: Edward A. Payzant

Copyright © 2016 Cássio Morilla dos Santos et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. X. Y. Qin, J. G. Kim, and J. S. Lee, “Synthesis and magnetic properties of nanostructured γ-Ni-Fe alloys,” Nanostructured Materials, vol. 11, no. 2, pp. 259–270, 1999. View at Publisher · View at Google Scholar
  2. R. da Paz Fiuza, M. A. da Silva, and J. S. Boaventura, “Development of Fe–Ni/YSZ–GDC electro-catalysts for application as SOFC anodes: XRD and TPR characterization and evaluation in ethanol steam reforming reaction,” International Journal of Hydrogen Energy, vol. 35, no. 20, pp. 11216–11228, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. C.-F. Zhang, Y.-L. Yao, Y.-L. Zhang, and J. Zhan, “Preparation of ultra-fine fibrous Fe-Ni alloy powder by coordinated co-precipitation-direct reduction process,” Transactions of Nonferrous Metals Society of China, vol. 22, no. 12, pp. 2972–2978, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. R. B. Scorzelli, E. Galvão da Silva, C. Kaito, Y. Saito, M. McElfresh, and M. Elmassalami, “Mössbauer spectroscopy, X-ray diffraction and magnetic measurements of iron-nickel ultrafine particles,” Hyperfine Interactions, vol. 94, no. 1, pp. 2337–2342, 1994. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. J. Suh, H. D. Jang, H. Chang, W. B. Kim, and H. C. Kim, “Size-controlled synthesis of Fe-Ni alloy nanoparticles by hydrogen reduction of metal chlorides,” Powder Technology, vol. 161, no. 3, pp. 196–201, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Djekoun, B. Bouzabata, A. Otmani, and J. M. Greneche, “X-ray diffraction and Mössbauer studies of nanocrystalline Fe-Ni alloys prepared by mechanical alloying,” Catalysis Today, vol. 89, no. 3, pp. 319–323, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Guittoum, A. Layadi, A. Bourzami et al., “X-ray diffraction, microstructure, Mössbauer and magnetization studies of nanostructured Fe50Ni50 alloy prepared by mechanical alloying,” Journal of Magnetism and Magnetic Materials, vol. 320, no. 7, pp. 1385–1392, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. Z. Xu, C. Jin, A. Xia, J. Zhang, and G. Zhu, “Structural and magnetic properties of nanocrystalline nickel-rich Fe-Ni alloy powders prepared via hydrazine reduction,” Journal of Magnetism and Magnetic Materials, vol. 336, pp. 14–19, 2013. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Jiang, S. Yang, Z. Hua, and H. Huang, “Sol-gel autocombustion synthesis of metals and metal alloys,” Angewandte Chemie—International Edition, vol. 48, no. 45, pp. 8529–8531, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. M. P. Pechini, Patent. Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor, United States Patent Office, 3330697, July, 1967.
  11. C. J. Brinker and G. W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Academic press, New York, NY, USA, 1990.
  12. M. Kakihana, “Invited review ‘sol-gel’ preparation of high temperature superconducting oxides,” Journal of Sol-Gel Science and Technology, vol. 6, no. 1, pp. 7–55, 1996. View at Publisher · View at Google Scholar · View at Scopus
  13. B. L. Cushing, V. L. Kolesnichenko, and C. J. O'Connor, “Recent advances in the liquid-phase syntheses of inorganic nanoparticles,” Chemical Reviews, vol. 104, no. 9, pp. 3893–3946, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. V. K. S. Soares, M. D. A. Gomes, R. S. Da Silva, Z. S. MacEdo, and C. H. Hayasi, “Production of Al2O3 nanoparticles employing mature coconut water (dried coconut),” Cerâmica, vol. 59, no. 349, pp. 160–164, 2013. View at Publisher · View at Google Scholar · View at Scopus
  15. T. P. Braga, D. F. Dias, M. F. de Sousa, J. M. Soares, and J. M. Sasaki, “Synthesis of air stable FeCo alloy nanocrystallite by proteic sol-gel method using a rotary oven,” Journal of Alloys and Compounds, vol. 622, pp. 408–417, 2015. View at Publisher · View at Google Scholar · View at Scopus
  16. N. A. S. Nogueira, V. H. S. Utuni, Y. C. Silva et al., “X-Ray diffraction and Mössbauer studies on superparamagnetic nickel ferrite (NiFe2O4) obtained by the proteic Sol-Gel method,” Materials Chemistry and Physics, vol. 163, pp. 402–406, 2015. View at Publisher · View at Google Scholar · View at Scopus
  17. C. T. Meneses, W. H. Flores, F. Garcia, and J. M. Sasaki, “A simple route to the synthesis of high-quality NiO nanoparticles,” Journal of Nanoparticle Research, vol. 9, no. 3, pp. 501–505, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. JCPDS-ICCD Database, The International Center of Diffraction Data, version 2.4, 2003.
  19. A. C. Larson and R. B. Von Dreele, “General Structure Analysis System (GSAS),” Los Alamos National Laboratory Report LAUR 86-748, Los Alamos National Laboratory, 2004. View at Google Scholar
  20. B. H. Toby, “EXPGUI, a graphical user interface for GSAS,” Journal of Applied Crystallography, vol. 34, no. 2, pp. 210–213, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. R. A. Brand, Software. Normos Mössbauer Fit Program, Duisburg University, 1995.
  22. G. Grosse, “Software,” PC-Mos II version 1.0, 1993.
  23. L. V. Azároff, Book. Elements of X-Ray Crystallography, McGraw-Hill Book Company, 1st edition, 1968.
  24. B. D. Cullity, Introduction to Magnetic Materials, Addison-Wesley, New York, NY, USA, 1st edition, 1972.
  25. C. Bernal, A. B. Couto, S. T. Breviglieri, and É. T. G. Cavalheiro, “Influência de alguns parâmetros experimentais nos resultados de análises calorimétricas diferenciais—DSC,” Química Nova, vol. 25, no. 5, pp. 849–855, 2002. View at Publisher · View at Google Scholar
  26. E. Manova, T. Tsoncheva, D. Paneva et al., “Synthesis, characterization and catalytic properties of nanodimensional nickel ferrite/silica composites,” Applied Catalysis A: General, vol. 317, no. 1, pp. 34–42, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Afzal, C. R. Theocharis, and S. Karim, “Temperature programmed reduction of silica supported nickel catalysts,” Colloid & Polymer Science, vol. 271, no. 11, pp. 1100–1105, 1993. View at Publisher · View at Google Scholar · View at Scopus
  28. J. C. Tristão, F. C. Moura, R. M. Lago, and K. Sapag, “Sistema RTP: uma técnica poderosa para o monitoramento da formação de nanotubos de carbono durante o processo por deposição de vapor químico,” Química Nova, vol. 33, no. 6, pp. 1379–1383, 2010. View at Publisher · View at Google Scholar
  29. H. N. Ok and M. S. Han, “Mössbauer studies on the superparamagnetic behavior of 69–31 at.% FeNi fine particles,” Journal of Applied Physics, vol. 44, no. 4, pp. 1932–1933, 1973. View at Publisher · View at Google Scholar · View at Scopus