Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2016, Article ID 3613928, 6 pages
http://dx.doi.org/10.1155/2016/3613928
Research Article

Serially Connected Micro Amorphous Silicon Solar Cells for Compact High-Voltage Sources

1School of Architectural, Civil, Environmental, and Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
2Advanced Functional Thin Films Department, Korea Institute of Materials Science (KIMS), Changwon 51508, Republic of Korea
3Department of Visual Optics, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea

Received 21 July 2016; Accepted 5 October 2016

Academic Editor: Shu Seki

Copyright © 2016 Jiyoon Nam et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Karpelson, G.-Y. Wei, and R. J. Wood, “Driving high voltage piezoelectric actuators in microrobotic applications,” Sensors and Actuators, A: Physical, vol. 176, pp. 78–89, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Patrascu, J. Gonzalo-Ruiz, M. Goedbloed, S. H. Brongersma, and M. Crego-Calama, “Flexible, electrostatic microfluidic actuators based on thin film fabrication,” Sensors and Actuators, A: Physical, vol. 186, pp. 249–256, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Behnam, G. V. Kaigala, M. Khorasani, P. Marshall, C. J. Backhouse, and D. G. Elliott, “An integrated CMOS high voltage supply for lab-on-a-chip systems,” Lab on a Chip-Miniaturisation for Chemistry and Biology, vol. 8, no. 9, pp. 1524–1529, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. K. A. Cook-Chennault, N. Thambi, and A. M. Sastry, “Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems,” Smart Materials and Structures, vol. 17, no. 4, Article ID 043001, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. F. Stelzl, J. Schulz-Gericke, M. Niggemann, and U. Würfel, “High yield fabrication of vertical interdigital electrodes with sub micrometer distance and their application in an organic photovoltaic device,” Organic Electronics: Physics, Materials, Applications, vol. 14, no. 2, pp. 535–541, 2013. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Garcia-Valverde, J. A. Villarejo, M. Hösel et al., “Scalable single point power extraction for compact mobile and stand-alone solar harvesting power sources based on fully printed organic photovoltaic modules and efficient high voltage DC/DC conversion,” Solar Energy Materials and Solar Cells, vol. 144, pp. 48–54, 2016. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Niggemann, B. Zimmermann, J. Haschke, M. Glatthaar, and A. Gombert, “Organic solar cell modules for specific applications-from energy autonomous systems to large area photovoltaics,” Thin Solid Films, vol. 516, no. 20, pp. 7181–7187, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Lewis, J. Zhang, and X. Jiang, “Fabrication of organic solar array for applications in microelectromechanical systems,” Journal of Renewable and Sustainable Energy, vol. 1, no. 1, Article ID 013101, 2009. View at Publisher · View at Google Scholar
  9. Y.-F. Lim, J.-K. Lee, A. A. Zakhidov et al., “High voltage polymer solar cell patterned with photolithography,” Journal of Materials Chemistry, vol. 19, no. 30, pp. 5394–5397, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Niggemann, W. Graf, and A. Gombert, “Realization of ultrahigh photovoltages with organic photovoltaic nanomodules,” Advanced Materials, vol. 20, no. 21, pp. 4055–4060, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. A. J. Baca, K. J. Yu, J. Xiao et al., “Compact monocrystalline silicon solar modules with high voltage outputs and mechanically flexible designs,” Energy and Environmental Science, vol. 3, no. 2, pp. 208–211, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Yoon, A. J. Baca, S.-I. Park et al., “Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs,” Nature Materials, vol. 7, no. 11, pp. 907–915, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. K. L. Chopra, P. D. Paulson, and V. Dutta, “Thin-film solar cells: an overview,” Progress in Photovoltaics: Research and Applications, vol. 12, no. 2-3, pp. 69–92, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Schaper, J. Schmidt, H. Plagwitz, and R. Brendel, “20.1%-Efficient crystalline silicon solar cell with amorphous silicon rear-surface passivation,” Progress in Photovoltaics: Research and Applications, vol. 13, no. 5, pp. 381–386, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (Version 45),” Progress in Photovoltaics: Research and Applications, vol. 23, no. 1, pp. 1–9, 2015. View at Publisher · View at Google Scholar · View at Scopus
  16. G. K. Singh, “Solar power generation by PV (photovoltaic) technology: a review,” Energy, vol. 53, pp. 1–13, 2013. View at Publisher · View at Google Scholar · View at Scopus
  17. H.-K. Kwon, K.-T. Lee, K. Hur et al., “Optically switchable smart windows with integrated photovoltaic devices,” Advanced Energy Materials, vol. 5, no. 3, Article ID 1401347, 2015. View at Publisher · View at Google Scholar · View at Scopus