Review Article

Nanomechanical Characterization of Amyloid Fibrils Using Single-Molecule Experiments and Computational Simulations

Table 1

Nanomechanical properties of amyloid fibrils measured from simulations and experiments.

MaterialMeasurement methodLength (nm)Bending rigidity (×10−26 N⋅m2)Young’s modulus (GPa)Shear modulus (GPa)Strength (GPa)Ref.

fibrilSteered molecular dynamics (simulation)3.41–17.57.73–37.75.97–6.714–8[23]
fibrilElastic network model (simulation)10–300~812–141.1[22]
fibrilMolecular dynamics (simulation)100.01–0.040.4–0.6[24]
fibrilCryoelectron microscopy (experiment)500–1000~130.0127[17]
fibrilElastic network model (simulation)~3021–634.3–5.6[27]
β-lactoglobulin fibrilAFM imaging experiment500–15,0000.4–1.6~4[16]
β-lactoglobulin fibrilAFM indentation experiment (peak force QNM)500–15,0003.3[19]
Mouse prion fibrilAFM experiments (AM-FM imaging)>10000.5–1.36[28]
α-synuclein fibrilAFM indentation (peak force QNM)>1000[20]
Insulin fibrilAFM bending experiment>~1500~9.1~0.28[26]
Insulin fibrilAFM imaging experiment>~2000~17~0.13[26]
HET-s prion fibrilSteered molecular dynamics (simulation)5.389.80.917[29]
HET-s prion fibrilElastic network model (simulation)8.930.1151.5[30]
Spider silk crystalSteered molecular dynamics (simulation)2–7~2.84.6[12]
Spider silk crystalSteered molecular dynamics (simulation)30–70[31]