Journal of Nanomaterials

Journal of Nanomaterials / 2017 / Article

Research Article | Open Access

Volume 2017 |Article ID 1734643 |

Megha Thakkar, Somenath Mitra, "Bimetallic Oxide Nanohybrid Synthesized from Diatom Frustules for the Removal of Selenium from Water", Journal of Nanomaterials, vol. 2017, Article ID 1734643, 9 pages, 2017.

Bimetallic Oxide Nanohybrid Synthesized from Diatom Frustules for the Removal of Selenium from Water

Academic Editor: Amit Bhatnagar
Received15 Jul 2017
Revised23 Nov 2017
Accepted27 Nov 2017
Published31 Dec 2017


Frustules or the rigid amorphous silica cell wall of unicellular, photosynthetic microalgae with unique porous architecture has been used to synthesize a composite by immobilizing zirconium and iron oxides on its surface and in the pores. This was effective for removal of Se from water, which is an emerging contaminant that is a micronutrient at low concentrations but toxic at high concentrations. The adsorption isotherms followed both Langmuir and Freundlich models, and the composite was regenerable. The Langmuir maximum adsorption capacity for Se(IV) was 227 mg/g, which is among the highest ever reported. The research findings highlight the synthesis of bimetallic composite as well as the potential of diatoms as hosts for nanomaterials for use in water treatment.

1. Introduction

Selenium is an important micronutrient for animals and humans but is toxic in excess [1]. Higher Se concentration can lower reproduction rates and increase birth defects [2, 3]. In water, selenium exists predominantly in inorganic forms selenite () where Se is present as the Se4+ and selenate () where selenium is present as the Se6+ [4]. The toxicity of selenium depends on its oxidation state and Se(IV) is considerably more toxic than Se(VI) [5]. Drinking water is a primary source for selenium exposure and the US Environmental Protection Agency has set the maximum contaminant level in drinking water to be 0.05 mg/L. Sources of Se include agricultural and mine drainage, residues from fossil fuel thermoelectric power plants, oil refineries, and metal ores [6].

A variety of treatment technologies have been explored for the remediation of both selenium oxoanions in water. These include bacterial reduction, membrane filtration, chemical reduction, reverse osmosis, and solar ponds [79]. These technologies have their limitations and alternative treatment techniques are being explored. Adsorption by metal oxides of iron and aluminum has shown promise in selenium removal [10]. Other materials like Mg/Fe hydrotalcite type compounds, hematite, magnetite, iron-coated GAC, and magnetic Fe/Mn oxide nanomaterials also have high affinity for selenium [1115]. Adsorbents such as sulphuric acid-treated peanut shell, hydrocalumite, ettringite, AlPO4, biopolymeric materials, aluminum-based water treatment chemicals, hardened cement paste, cement minerals, aluminum oxides, iron oxyhydroxides, iron-coated sand, and zero valent iron [1623] have also been tested for Se removal.

The search for more efficient water treatment media has led to the development of nanostructured adsorbents where metals, metal oxides, and ion-exchange medium are immobilized on supports that promote nanostructuring [24]. Along with the active sorbent(s), the support plays an important role. Properties like thermal, mechanical, and chemical aid in structuring of the active ingredient [24]. Consequently, composite or hybrid structures are promising materials for water treatment. The widely used host materials for nanocomposite include carbonaceous materials like granular activated carbon [25], silica [2629], cellulose [30, 31], chitosan [32, 33], sand [34, 35], and polymers [3638]. Some examples include the immobilization of metal oxides on carbon nanotubes for lead, arsenic, and fluoride removal [3941], activated carbon immobilized on carbon nanotubes for chromium removal [25], and carbohydrate and iron oxide on multiwalled carbon nanotubes for zinc removal [42].

Diatoms are unicellular, photosynthetic microalgae that are widely distributed in fresh and seawater. Diatoms can self-replicate and can further be engineered to provide cost-effective and programmable industrialized system [43]. There are over eleven thousand known species whose size ranges from 2 µm to 2 mm and they also have diverse morphology [44]. Naturally occurring diatom frustules are a source of nanomaterials. Frustules, or the rigid amorphous silica cell wall of the diatoms, have unique porous architecture [45, 46] and high surface area [47]. Recently, they have found a variety of applications including water filtration membrane [48], gas sensor [49], electroluminescent display device [50], lithium battery electrode [50], dye sensitized solar cells [50], biochip [51], and drug delivery [52]. It is possible that the diatoms can serve as hosts for immobilizing active sorbent particles on their surface. The surface of the diatom can have different functionalities such as –COOH, –NH2, –OH, and –SiOH, and different compounds can be immobilized on their surface by interactions with these functional groups [53, 54]. They have been successfully used as templates for the synthesis of advanced nanostructured biohybrids. Diatom can be used in water filtration and purification due to different interesting properties likes filtration of microorganisms, homogenous permeability, and fixed pore size, USEPA approved [43]. Not much research is done on exploring diatom for water purification applications.

The objective of this research is to develop nanosorbents by immobilizing metal oxides on diatom surface and in pores of diatom frustules. It is well known that mixed metal oxides usually exhibit better sorption abilities than individual oxides in terms of higher capacities, pH tolerance, and faster kinetics [55, 56]. Hydrous zirconium oxide is known to retain various oxo metal anions, especially those that can form weak conjugate acids [57]. It is also known to be chemically stable and nontoxic and does not dissolve in water at a wide range of pH [58]. At the same time, the iron oxides/hydroxides have been gaining popularity in water treatment and are known to adsorb Se [56]. Therefore, the specific objective is to develop a bimetallic oxide composite by immobilizing iron and zirconium oxides on diatom frustules for effective removal of Se from water.

2. Materials and Methods

2.1. Synthesis of Bimetallic Diatom Composite

Diatom Phaeodactylum tricornutum was cultured and maintained in artificial sea water Aquil [59] using a diurnal chamber with 12-hour day/night cycles at 19°C ± 1°C. 6 L of diatom culture was flocculated with 6 g of ZrOCl2·8H2O and 60 g of FeCL36H2O purchased from Sigma Aldrich at pH 9. One molar NaOH was used to adjust the pH to 9.

After flocculation, the culture was conditioned overnight with shaking (150 rpm, 2880 VWR orbital shaker). The resulting bimetallic diatom mixture was separated by gravitational settling and membrane filtration (<5 psi, 0.2 µm PTFE filter) and was washed with 500 mL Milli-Q water. The resulting slurry was transferred to 50 mL centrifuge tube and thermally treated at 70°C in an oven for 6 h. Then, it was treated with 10 mL of concentrated H2SO4 and heated for 2 hrs at 200°C, vacuum-filtered using 0.2 µm filter, washed with Milli-Q water to neutral pH, and then dried at 200°C in a vacuum oven. The bimetallic oxide-diatom composite (BMDC) was characterized using transmission electron (HRTEM), scanning electron microscope equipped with energy dispersive X-ray spectrometer (SEM, LEO 1530 VP), thermogravimetric analyzer (TGA using Pyris 1 from PerkinElmer Inc.), BET surface area analyzer (Quantachrome Autosorb-1), and FTIR (IR Affinity-1, Shimadzu).

2.2. Adsorption Studies

The kinetics of adsorption were performed as follows. 50 millilitres of 5 mg/L of Se(IV) and (VI) solutions was contacted with 0.010 g and 0.025 g of adsorbent in polycarbonate bottles and the samples were collected at 5, 15, and 30 minutes followed by 1, 3, 6, and 24 hours. 5 mL aliquot was withdrawn at different time intervals and filtered using 0.2 µm membrane filter and residual Se in the media was quantified using Agilent 7500 ICP-MS. All standards were prepared from multielement solution 2A, 10 mg/L (Spex Certiprep), with addition of internal standard mix (Li6, Ge, Y, In, Tb, and Bi). Multielement instrument calibration standard, 1 and 20 mg/L (Spex Certiprep), was used for the verification of calibration. The adsorption capacity and adsorption isotherms were obtained by varying the mass of adsorbent from 0.002 to 0.015 g (Se IV) and 0.002 to 0.050 g Se(VI) with 50 mL of 5 mg/L Se containing water at pH 6. The samples were collected for analysis after 0, 6, and 24 hours of adsorption.

Adsorption was studied at pH values 2, 4, 6, and 8 using 50 millilitres of 1 mg/L Se(IV) solution that was contacted with 0.010 g of adsorbent for 24 h. Desorption of selenium from the spent bimetallic diatom composite was carried out using 1 M NaCl and 0.1 M NaOH solution. After selenium adsorption, the composite was washed with 1 M NaCl, followed by distilled water and 0.1 M NaOH.

3. Results and Discussion

3.1. Characterization of Bimetallic Oxide-Diatom Composite

Diatom Phaeodactylum tricornutum was grown till the late exponential phase [60]. After adding ZrOCl28H2O, FeCl38H2O, and NaOH to the diatom, Zr and Fe oxides were precipitated on the diatom surface and chemically attached with diatom functional groups such as –COOH, –NH2, –OH, and –SiOH. This was enhanced by heat treatment at 70°C for 6 h. Furthermore, H2SO4 treatment decomposed all the organic matter leaving algal core with Zr and Fe oxides on its surface. Mesoporous zirconia can be obtained by contacting amorphous hydrous zirconia obtained by alkaline hydrolysis with sulphuric acid followed by calcinations [61].

The presence of Zr and Fe particles on diatom surface was studied using SEM. Figure 1(a) shows SEM of the original diatom, Figure 1(b) shows bimetallic composite, and Figures 1(c) and 1(d) show mapping of Zr and Fe from BMDC. Similarly, Figures 1(e) and 1(f) show TEM image of the diatom and BMDC. SEM and TEM images showed that the original diatom was reduced to porous nanobiosilica. EDX analysis using SEM confirmed the presence of Zr (89.87%) and Fe (8.75%) in BMDC.

The specific surface area of bimetallic diatom composite based on BET measurements was found to be 128 m2/g and pore diameter was 9.39 Å. The FTIR (Figure 2) was used to confirm the functional groups. The observed peak at 374–400 cm−1 was attributed to Zr-O vibration, which confirmed the ZrO2 structure [62]. The observed peak at 551 cm−1 and around 700 cm−1 was attributed to Fe [63]. Both spectra showed peaks at 1108 and between 3300 cm−1 and 3500 cm−1. These were due to stretching of siloxane (Si–O–Si) and free silanol group (Si–OH) [64].

TGA was used to test the thermal stability of the BMDC (Figure 3). The weight loss below 120°C was attributed to the removal of physisorbed water while the loss between 120 and 300°C was due to chemisorbed water [65]. In the 300–400°C range, the weight loss was from the oxidation and decomposition of mercaptopropyl or aminopropyl groups on diatom surface. The broad exothermic weight loss in the range of 400–600°C was due to the decomposition of strongly tethered organosilanes and dehydration of silanol groups, and the weight reduction between 400 and 800°C was due to the dehydroxylation of the silica surface [66, 67]. TGA curve indicated that bimetallic diatom composite exhibited good thermal stability. It is worth noting that the observed weight loss (25%) below 300°C was mainly ascribed to the evaporation of water. Only 15% of the mass remained as residue beyond 600°C.

3.2. Selenium Removal Using BMDC

It was observed that no selenium was adsorbed on the pure diatom, but the BMDC was effective in removing selenium from water. Selenite and selenate uptake by BMDC was studied as a function of time and is presented in Figure 4. Selenium sorption increased as a function of contact time. 0.010 g of bimetallic composite showed Se(IV) uptake of 50 and 95% at 15 mins and 3 hrs, respectively, whereas 0.025 g of bimetallic composite showed removal of only 40% Se(VI) after 24 hrs of contact. This shows that bimetallic diatom composite shows better Se(IV) removal efficiency compared with Se(VI).

The amount of selenium adsorbed was calculated using the following equation:where and (mg/L) are the liquid-phase concentrations of selenium at initial and equilibrium concentrations, respectively, is the volume of solution in (L), and is the mass of the adsorbent used (g). Adsorbent dosage is an important parameter because this determines the capacity of an adsorbent. It was observed that, at equilibrium, the percentage removal increased with the increase in the adsorbent concentration while the adsorption capacity decreased. Table 1 presents at different adsorbent dosage. It was seen that the initial adsorbent dose affects the adsorption capacity; dropped from 56.24 mg/g for 0.001 g of adsorbent to 6.45 mg/g for 0.015 g for Se(IV) and 10.6 mg/g for 0.002 g of adsorbent to 0.89 mg/g for 0.05 g for Se(VI).

Initial adsorbent concentration (g)Experimental
% removal



The kinetics of selenium uptake were studied using Lagergren [68] as well as Ho and McKay kinetic models [69]. The former models the rate of adsorption of pollutants based on pseudo-first equation to describe the kinetics of liquid-solid phase adsorption [70].The rate constant was calculated from a linear plot of log verses , where and are the sorption capacity (mg/g) of the adsorbent at equilibrium and at time (h−1), and is the rate constant of pseudo-first order. The second-order equation from Ho and McKay is based on the assumption that adsorption may be of second order and the rate limiting step may be from chemical adsorption involving exchange of valence electrons [71]The rate constant was calculated from a linear plot of versus . Here is the pseudo-second-order sorption rate constant (g/h/mg) and is time (h−1). The applicability of first- and second-order models was tested for adsorption of selenium on BMDC. Table 2 presents the kinetic data. The best fit was selected based on the linear regression coefficient . The models were fitted with the experimental data. Ho and McKay’s second-order equation was found to be a better fit as compared with the first-order equation. The adsorption rates obtained from first- and second-order kinetic models are given in Table 2. In the first-order model, a larger adsorption rate constant usually represents quicker adsorption whereas in the second-order model, a lower value of represents faster adsorption. This is due to the availability of large number of binding sites.



The effect of pH was studied at 2, 4, 6, 8, and 10 (Figure 5). The variation in pH in the range of 2 to 6 did not show much effect on percent adsorption. With increase in pH from 6 to 10, the adsorption capacity decreased. At low pH conditions, the H3O+ ion concentration was optimum to make the surface of the BMDC positively charged and hence accessible for selenium ions. With an increase in pH, especially in alkaline medium, the selenium uptake was reduced due to the competition with OH-, which also had high affinity for the zirconium and iron ion.

Langmuir [72] and Freundlich [73] isotherms provided an insight into the surface coverage via physisorption and/or chemisorption. Langmuir isotherm best describes the chemisorption process. The adsorption involves the attachment of monolayer of molecules on the surface. The linear form of Langmuir adsorption isotherm, which involves a plot of versus , is represented asHere, (mg/g) is the maximum sorption capacity of the sorbent, (mg/L) is the equilibrium selenium ion concentration, and Langmuir constant (L/mg) is indirectly related to the enthalpy of adsorption. The essential features of Langmuir adsorption parameters can be used to predict the affinity between the sorbent and the sorbate using the dimensionless separation factor which is expressed as follows:where is Langmuir constant and is initial concentration. indicates the nature of adsorption ( between 0 and 1 is considered favourable, is unfavourable, and is reversible) [74, 75].

The correlation coefficient for the Langmuir model was 0.956, which demonstrated a high degree of correlation. The Langmuir parameters are presented in Table 3. The maximum adsorption capacity for Se(IV) on the composite was 277 mg/g and Se(VI) was 0.48 mg/g at pH 6. The Langmuir constant , the ratio of adsorption rate constant to desorption rate constant, is an indication of affinity of the sorbent material towards selenium. Since was less than 1, the adsorption was considered favourable. Hence Langmuir model effectively explained the selenium uptake by the bimetallic diatom composite.

Langmuir modelFreundlich model


: the maximum sorption capacity of the sorbent; : Langmuir constant; : Freundlich constant; : correlation coefficient.

Freundlich adsorption was also tested. In its linearized form, the Freundlich isotherm involves a plot of log qe and log Ce: The values for log and were obtained as the intercept and slope, respectively (Table 3). A measure of adsorption capacity and adsorption intensity was provided by the Freundlich constants (mg g−1) and , respectively. Here, was an indicator of the degree of nonlinearity between water concentration and sorption ( denotes linear adsorption, a chemisorption, and physisorption [76]). The bond energy increases proportionally with surface density for and vice versa for . Values of being 0.47 and 0.45 implied that the adsorption was a chemical process and that the bond energy increased with surface coverage [73]. The correlation coefficient, , was 0.95.

Based on the second-order kinetics, Langmuir model, and Freundlich model, the adsorption appeared to be via a chemical process. Adsorption of Se can occur due to both outer and inner sphere complexation on metal oxides [77]. Selenate is known to be more strongly adsorbed than selenite at a wide range of pH. As per the recent review, mixed metal oxide, double layered materials, and adsorbents based on natural materials have shown good sorption capacities and relative fast kinetics. It is worth mentioning that the sorption capacity from our study is comparable to those reported before. For example, of 2.38 mg/g was reported for selenate removal using Fe3O4 [78], 26.3 mg/g using FeOOH [77, 79], 29.0 mg/g using Fe-Mn hydrous oxide [24], and 74.9 mg/g Se(IV) using green alga Cladophora hutchinsia [80]. Recent study on selenium removal using MgO sheets showed adsorption capacity of Se(IV) 103.52 mg/g and Se(VI) 10.58 mg/g [22]. Se(IV) Langmuir adsorption capacity of MNP@hematite is 25.0 mg/g, MNP core 15.3 mg/g, magnetic nanoparticle-graphene oxide 23.8 mg/g [81], Al(III)/SiO2 20.4 mg/g [82], a-Fe2O3 17.9 mg/g [83], Fe/Si coprecipitates 17.4 mg/g [20], MIO/MWCNTs 13.1 mg/g [21], CuFe2O4 14.1 mg/g [19], and iron manganese oxide 6.57 mg/g [15].

Desorption of Se(IV) and regeneration of BMDC were studied by monitoring the effluent washes from a Se(IV) sorbed BMDC. 0.050 g of adsorbent was contacted with 50 mL of 2 mg/L of Se(IV) solution. After 24 hours of exposure, the solution was vacuum-filtered using 0.2 um filter and washed with 1 M NaCl followed by distilled water and 0.1 M NaOH solutions. Brine wash resulted only in small amounts of Se(IV) desorption indicating that only a small fraction of ions are held by ion-exchange/electrostatic forces. A nearly complete removal of adsorbed Se(IV) was achieved by alkali wash which overcame all interactions of the sorbent with Se(IV) through a dominating competition for surface active sites. In short, Se(IV) could be regenerated relatively easily by treating with an alkaline solution (e.g., 0.1 M NaOH). Sodium hydroxide quantitatively desorbed all bound Se(IV) without damaging the BMDC which could be reused after washing it with 0.1 M H2SO4 acid followed by distilled water till neutral pH. Two successive regenerations showed more than 90% removal efficiency.

4. Conclusion

Diatom offers unique architecture with excellent mechanical strength. This paper highlights the potential of diatom as the host for immobilizing nanomaterials to form composite. A bimetallic composite was successfully synthesized for removal of Se from water. This was achieved by precipitating zirconium and iron oxides on the diatom and then oxidizing the organic mass. Maximum Se(IV) adsorption capacity of 277 mg/g adsorbent was calculated using the Langmuir adsorption isotherm. A variation in pH between 2 and 6 did not alter the adsorption capacity, but a significant reduction in capacity was seen at pH 8. The BMDC had a higher adsorption capacity for Se(IV) when compared with Se(VI).


Any opinions, findings, and conclusions or recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of the NJWRRI.

Conflicts of Interest

The authors declare that they have no conflicts of interest.


The authors would like to thank New Jersey Water Resources Research Institute of Technology (NJWRRI) for partial funding under Grant no. 2016NJ383B.


  1. S. Sharma and R. Singh, “Selenium in Soil, Plant, and Animal Systems,” C R C Critical Reviews in Environmental Control, vol. 13, no. 1, pp. 23–50, 1983. View at: Publisher Site | Google Scholar
  2. H. M. Ohlendorf, “Bioaccumulation and effects of selenium in wildlife,” in Selenium in Agriculture and the Environment(seleniuminagric), pp. 133–177, 1989. View at: Google Scholar
  3. D. Strawn, H. Doner, M. Zavarin, and S. McHugo, “Microscale investigation into the geochemistry of arsenic, selenium, and iron in soil developed in pyritic shale materials,” Geoderma, vol. 108, no. 3-4, pp. 237–257, 2002. View at: Publisher Site | Google Scholar
  4. C. M. Gonzalez, J. Hernandez, J. R. Peralta-Videa, C. E. Botez, J. G. Parsons, and J. L. Gardea-Torresdey, “Sorption kinetic study of selenite and selenate onto a high and low pressure aged iron oxide nanomaterial,” Journal of Hazardous Materials, vol. 211-212, pp. 138–145, 2012. View at: Publisher Site | Google Scholar
  5. M. G. C. Fernandez, M. A. Palacios, and C. Camara, “Flow-injection and continuous-flow systems for the determination of Se(IV) and Se(VI) by hydride generation atomic absorption spectrometry with on-line prereduction of Se(VI) to Se(IV),” Analytica Chimica Acta, vol. 283, no. 1, pp. 386–392, 1993. View at: Publisher Site | Google Scholar
  6. S. Santos, G. Ungureanu, R. Boaventura, and C. Botelho, “Selenium contaminated waters: an overview of analytical methods, treatment options and recent advances in sorption methods,” Science of the Total Environment, vol. 521-522, no. 1, pp. 246–260, 2015. View at: Publisher Site | Google Scholar
  7. W. T. Frankenberger Jr. and M. Arshad, “Bioremediation of selenium-contaminated sediments and water,” BioFactors, vol. 14, no. 1-4, pp. 241–254, 2001. View at: Publisher Site | Google Scholar
  8. V. Mavrov, S. Stamenov, E. Todorova, H. Chmiel, and T. Erwe, “New hybrid electrocoagulation membrane process for removing selenium from industrial wastewater,” Desalination, vol. 201, no. 1-3, pp. 290–296, 2006. View at: Publisher Site | Google Scholar
  9. E. I. El-Shafey, “Removal of Se(IV) from aqueous solution using sulphuric acid-treated peanut shell,” Journal of Environmental Management, vol. 84, no. 4, pp. 620–627, 2007. View at: Publisher Site | Google Scholar
  10. M. O. M. Sharrad, H. Liu, and M. Fan, “Evaluation of FeOOH performance on selenium reduction,” Separation and Purification Technology, vol. 84, pp. 29–34, 2012. View at: Publisher Site | Google Scholar
  11. J. Das, D. Das, G. P. Dash, and K. M. Parida, “Studies on Mg/Fe hydrotalcite-like-compound (HTlc): I. Removal of inorganic selenite (SeO32−) from aqueous medium,” Journal of Colloid and Interface Science, vol. 251, no. 1, pp. 26–32, 2002. View at: Publisher Site | Google Scholar
  12. M. Duc, G. Lefèvre, and M. Fédoroff, “Sorption of selenite ions on hematite,” Journal of Colloid and Interface Science, vol. 298, no. 2, pp. 556–563, 2006. View at: Publisher Site | Google Scholar
  13. M. Martínez, J. Giménez, J. De Pablo, M. Rovira, and L. Duro, “Sorption of selenium(IV) and selenium(VI) onto magnetite,” Applied Surface Science, vol. 252, no. 10, pp. 3767–3773, 2006. View at: Publisher Site | Google Scholar
  14. N. Zhang, L.-S. Lin, and D. Gang, “Adsorptive selenite removal from water using iron-coated GAC adsorbents,” Water Research, vol. 42, no. 14, pp. 3809–3816, 2008. View at: Publisher Site | Google Scholar
  15. C. M. Gonzalez, J. Hernandez, J. G. Parsons, and J. L. Gardea-Torresdey, “A study of the removal of selenite and selenate from aqueous solutions using a magnetic iron/manganese oxide nanomaterial and ICP-MS,” Microchemical Journal, vol. 96, no. 2, pp. 324–329, 2010. View at: Publisher Site | Google Scholar
  16. M. Zhang and E. J. Reardon, “Removal of B, Cr, Mo, and Se from wastewater by incorporation into hydrocalumite and ettringite,” Environmental Science & Technology, vol. 37, no. 13, pp. 2947–2952, 2003. View at: Google Scholar
  17. T. Roussel, C. Bichara, and R. J.-M. Pellenq, “Selenium and carbon nanostructures in the pores of AlPO4-5,” Adsorption, vol. 11, no. 1, pp. 709–714, 2005. View at: Publisher Site | Google Scholar
  18. I. Bonhoure, I. Baur, E. Wieland, C. A. Johnson, and A. M. Scheidegger, “Uptake of Se(IV/VI) oxyanions by hardened cement paste and cement minerals: An X-ray absorption spectroscopy study,” Cement and Concrete Research, vol. 36, no. 1, pp. 91–98, 2006. View at: Publisher Site | Google Scholar
  19. W. Sun, W. Pan, F. Wang, and N. Xu, “Removal of Se(IV) and Se(VI) by MFe2O4 nanoparticles from aqueous solution,” Chemical Engineering Journal, vol. 273, pp. 353–362, 2015. View at: Publisher Site | Google Scholar
  20. Y.-T. Chan, W.-H. Kuan, Y.-M. Tzou et al., “Molecular Structures of Al/Si and Fe/Si Coprecipitates and the Implication for Selenite Removal,” Scientific Reports, vol. 6, Article ID 24716, 2016. View at: Publisher Site | Google Scholar
  21. C.-G. Lee and S.-B. Kim, “Removal of arsenic and selenium from aqueous solutions using magnetic iron oxide nanoparticle/multi-walled carbon nanotube adsorbents,” Desalination and Water Treatment, vol. 57, no. 58, pp. 28323–28339, 2016. View at: Publisher Site | Google Scholar
  22. W. Cui, P. Z. Li, S. Wang, Y. Zheng, and Zhang., “Adsorption study of selenium ions from aqueous solutions using MgO nanosheets synthesized by ultrasonic method,” Journal of Hazardous Materials, vol. 341, Supplement C, pp. 268–276, 2018. View at: Google Scholar
  23. Z. Ma, C. Shan, J. Liang, and M. Tong, “Efficient adsorption of Selenium(IV) from water by hematite modified magnetic nanoparticles,” Chemosphere, pp. 134–141, 2017. View at: Publisher Site | Google Scholar
  24. X. Zhao, L. Lv, B. Pan, W. Zhang, S. Zhang, and Q. Zhang, “Polymer-supported nanocomposites for environmental application: A review,” Chemical Engineering Journal, vol. 170, no. 2-3, pp. 381–394, 2011. View at: Publisher Site | Google Scholar
  25. M. Ali Atieh, “Removal of chromium (VI) from polluted water using carbon nanotubes supported with activated carbon,” in Proceedings of the Urban Environmental Pollution 2010, pp. 281–293, USA, June 2010. View at: Publisher Site | Google Scholar
  26. S. Sinha Ray, K. Yamada, M. Okamoto, A. Ogami, and K. Ueda, “New polylactide/layered silicate nanocomposites. 3. High-performance biodegradable materials,” Chemistry of Materials, vol. 15, no. 7, pp. 1456–1465, 2003. View at: Publisher Site | Google Scholar
  27. C. Caparrós, M. Benelmekki, P. M. Martins et al., “Hydrothermal assisted synthesis of iron oxide-based magnetic silica spheres and their performance in magnetophoretic water purification,” Materials Chemistry and Physics, vol. 135, no. 2-3, pp. 510–517, 2012. View at: Publisher Site | Google Scholar
  28. N. Ferroudj, J. Nzimoto, A. Davidson et al., “Maghemite nanoparticles and maghemite/silica nanocomposite microspheres as magnetic Fenton catalysts for the removal of water pollutants,” Applied Catalysis B: Environmental, vol. 136-137, pp. 9–18, 2013. View at: Publisher Site | Google Scholar
  29. M. Kokate, K. Garadkar, and A. Gole, “One pot synthesis of magnetite-silica nanocomposites: applications as tags, entrapment matrix and in water purification,” Journal of Materials Chemistry A, vol. 1, no. 6, pp. 2022–2029, 2013. View at: Google Scholar
  30. Z. Liu, H. Wang, C. Liu et al., “Magnetic cellulose-chitosan hydrogels prepared from ionic liquids as reusable adsorbent for removal of heavy metal ions,” Chemical Communications, vol. 48, no. 59, pp. 7350–7352, 2012. View at: Publisher Site | Google Scholar
  31. X. Yu, S. Tong, M. Ge, J. Zuo, C. Cao, and W. Song, “One-step synthesis of magnetic composites of cellulose@iron oxide nanoparticles for arsenic removal,” Journal of Materials Chemistry A, vol. 1, no. 3, pp. 959–965, 2013. View at: Google Scholar
  32. Y.-C. Chang and D.-H. Chen, “Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4 magnetic nanoparticles for removal of Cu(II) ions,” Journal of Colloid and Interface Science, vol. 283, no. 2, pp. 446–451, 2005. View at: Publisher Site | Google Scholar
  33. Y.-T. Zhou, H.-L. Nie, C. Branford-White, Z.-Y. He, and L.-M. Zhu, “Removal of Cu2+ from aqueous solution by chitosan-coated magnetic nanoparticles modified with α-ketoglutaric acid,” Journal of Colloid and Interface Science, vol. 330, no. 1, pp. 29–37, 2009. View at: Publisher Site | Google Scholar
  34. B. Hansen, P. Kwan, M. M. Benjamin, L. I. Chi-Wang, and G. V. Korshin, “Use of iron oxide-coated sand to remove strontium from simulated Hanford tank wastes,” Environmental Science & Technology, vol. 35, no. 24, pp. 4905–4909, 2001. View at: Publisher Site | Google Scholar
  35. C. Ding, X. Yang, W. Liu, Y. Chang, and C. Shang, “Removal of natural organic matter using surfactant-modified iron oxide-coated sand,” Journal of Hazardous Materials, vol. 174, no. 1-3, pp. 567–572, 2010. View at: Publisher Site | Google Scholar
  36. F. Ge, M. Li, H. Ye, and B. Zhao, “Effective removal of heavy metal ions Cd2+, Zn2+, Pb2+, Cu2+ from aqueous solution by polymer-modified magnetic nanoparticles,” Journal of Hazardous Materials, vol. 211-212, pp. 366–372, 2012. View at: Publisher Site | Google Scholar
  37. A. Z. M. Badruddoza, Z. B. Z. Shawon, W. J. D. Tay, K. Hidajat, and M. S. Uddin, “Fe3O4/cyclodextrin polymer nanocomposites for selective heavy metals removal from industrial wastewater,” Carbohydrate Polymers, vol. 91, no. 1, pp. 322–332, 2013. View at: Publisher Site | Google Scholar
  38. A. Farrukh, A. A. Akram, S. Ghaffar et al., “Design of polymer-brush-grafted magnetic nanoparticles for highly efficient water remediation,” ACS Applied Materials & Interfaces, vol. 5, no. 9, pp. 3784–3793, 2013. View at: Google Scholar
  39. S. Addo Ntim and S. Mitra, “Removal of trace arsenic to meet drinking water standards using iron oxide coated multiwall carbon nanotubes,” Journal of Chemical & Engineering Data, vol. 56, no. 5, pp. 2077–2083, 2011. View at: Google Scholar
  40. V. K. Gupta, S. Agarwal, and T. A. Saleh, “Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal,” Journal of Hazardous Materials, vol. 185, no. 1, pp. 17–23, 2011. View at: Publisher Site | Google Scholar
  41. S. Addo Ntim and S. Mitra, “Adsorption of arsenic on multiwall carbon nanotube-zirconia nanohybrid for potential drinking water purification,” Journal of Colloid and Interface Science, vol. 375, no. 1, pp. 154–159, 2012. View at: Publisher Site | Google Scholar
  42. S. Yang, Z. Guo, G. Sheng, and X. Wang, “Application of a novel plasma-induced CD/MWCNT/iron oxide composite in zinc decontamination,” Carbohydrate Polymers, vol. 90, no. 2, pp. 1100–1105, 2012. View at: Publisher Site | Google Scholar
  43. M. Mishra, A. P. Arukha, T. Bashir, D. Yadav, and G. B. K. S. Prasad, “All new faces of diatoms: potential source of nanomaterials and beyond,” Frontiers in Microbiology, vol. 8, 2017. View at: Publisher Site | Google Scholar
  44. F. E. Round, R. M. Crawford, and D. G. Mann, The Diatoms: Biology & Morphology of the Genera, Cambridge University Press, Cambridge, UK, 1990.
  45. C. E. Hamm, R. Merkel, O. Springer et al., “Architecture and material properties of diatom shells provide effective mechanical protection,” Nature, vol. 421, no. 6925, pp. 841–843, 2003. View at: Publisher Site | Google Scholar
  46. D. Losic, G. Triani, P. J. Evans, A. Atanacio, J. G. Mitchell, and N. H. Voelcker, “Controlled pore structure modification of diatoms by atomic layer deposition of TiO2,” Journal of Materials Chemistry, vol. 16, no. 41, pp. 4029–4034, 2006. View at: Publisher Site | Google Scholar
  47. Y. Wang, J. Cai, Y. Jiang, X. Jiang, and D. Zhang, “Preparation of biosilica structures from frustules of diatoms and their applications: Current state and perspectives,” Applied Microbiology and Biotechnology, vol. 97, no. 2, pp. 453–460, 2013. View at: Publisher Site | Google Scholar
  48. D. Losic, G. Rosengarten, J. G. Mitchell, and N. H. Voelcker, “Pore architecture of diatom frustules: Potential nanostructured membranes for molecular and particle separations,” Journal of Nanoscience and Nanotechnology, vol. 6, no. 4, pp. 982–989, 2006. View at: Publisher Site | Google Scholar
  49. Z. Bao, M. R. Weatherspoon, S. Shian et al., “Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas,” Nature, vol. 446, no. 7132, pp. 172–175, 2007. View at: Publisher Site | Google Scholar
  50. C. Jeffryes, J. Campbell, H. Li, J. Jiao, and G. Rorrer, “The potential of diatom nanobiotechnology for applications in solar cells, batteries, and electroluminescent devices,” Energy & Environmental Science, vol. 4, no. 10, pp. 3930–3941, 2011. View at: Google Scholar
  51. Y. Wang, D. Zhang, J. Pan, and J. Cai, “Key factors influencing the optical detection of biomolecules by their evaporative assembly on diatom frustules,” Journal of Materials Science, vol. 47, no. 17, pp. 6315–6325, 2012. View at: Publisher Site | Google Scholar
  52. M. S. Aw, S. Simovic, Y. Yu, J. Addai-Mensah, and D. Losic, “Porous silica microshells from diatoms as biocarrier for drug delivery applications,” Powder Technology, vol. 223, pp. 52–58, 2012. View at: Publisher Site | Google Scholar
  53. A. Gélabert, O. S. Pokrovsky, J. Schott et al., “Study of diatoms/aqueous solution interface. I. Acid-base equilibria and spectroscopic observation of freshwater and marine species,” Geochimica et Cosmochimica Acta, vol. 68, no. 20, pp. 4039–4058, 2004. View at: Publisher Site | Google Scholar
  54. A. Gélabert, O. S. Pokrovsky, J. Schott, A. Boudou, and A. Feurtet-Mazel, “Cadmium and lead interaction with diatom surfaces: A combined thermodynamic and kinetic approach,” Geochimica et Cosmochimica Acta, vol. 71, no. 15, pp. 3698–3716, 2007. View at: Publisher Site | Google Scholar
  55. N. Chubar, “New inorganic (an)ion exchangers based on Mg-Al hydrous oxides: (Alkoxide-free) sol-gel synthesis and characterisation,” Journal of Colloid and Interface Science, vol. 357, no. 1, pp. 198–209, 2011. View at: Publisher Site | Google Scholar
  56. M. Szlachta, V. Gerda, and N. Chubar, “Adsorption of arsenite and selenite using an inorganic ion exchanger based on Fe-Mn hydrous oxide,” Journal of Colloid and Interface Science, vol. 365, no. 1, pp. 213–221, 2012. View at: Publisher Site | Google Scholar
  57. T. M. Suzuki, M. L. Tanco, D. A. P. Tanaka, H. Matsunaga, and T. Yokoyama, “Adsorption characteristics and removal of oxo-anions of arsenic and selenium on the porous polymers loaded with monoclinic hydrous zirconium oxide,” Separation Science and Technology, vol. 36, no. 1, pp. 103–111, 2001. View at: Publisher Site | Google Scholar
  58. B. Pan, J. Xu, Z. B. Wu, Z. Li, and X. Liu, “Enhanced removal of fluoride by polystyrene anion exchanger supported hydrous zirconium oxide nanoparticles,” Environmental Science & Technology, vol. 47, no. 16, pp. 9347–9354, 2013. View at: Google Scholar
  59. N. M. Price, G. I. Harrison, J. G. Hering et al., “Preparation and chemistry of the artificial algal culture medium Aquil,” Biological Oceanography, vol. 6, no. 5-6, pp. 443–461, 1989. View at: Google Scholar
  60. M. Thakkar, Z. Wu, L. Wei, and S. Mitra, “Water defluoridation using a nanostructured diatom-ZrO2 composite synthesized from algal Biomass,” Journal of Colloid and Interface Science, vol. 450, pp. 239–245, 2015. View at: Publisher Site | Google Scholar
  61. J. A. Wang, L. F. Chen, M. A. Valenzuela et al., “Surfactant-assisted synthesis of defective zirconia mesophases and Pd/ZrO2: Crystalline structure and catalytic properties,” Applied Surface Science, vol. 254, no. 16, pp. 5061–5072, 2008. View at: Publisher Site | Google Scholar
  62. A. K. Singh and U. T. Nakate, “Microwave synthesis, characterization, and photoluminescence properties of nanocrystalline zirconia,” The Scientific World Journal, vol. 2014, Article ID 349457, 7 pages, 2014. View at: Publisher Site | Google Scholar
  63. M. Szlachta and N. Chubar, “The application of Fe-Mn hydrous oxides based adsorbent for removing selenium species from water,” Chemical Engineering Journal, vol. 217, pp. 159–168, 2013. View at: Publisher Site | Google Scholar
  64. J. Q. Dalagan and E. P. Enriquez, “Interaction of Diatom Silica with Graphene,” Phillippine Science Letters, vol. 6, no. 1, pp. 119–127, 2013. View at: Google Scholar
  65. M. Guan, W. Liu, Y. Shao, H. Huang, and H. Zhang, “Preparation, characterization and adsorption properties studies of 3-(methacryloyloxy)propyltrimethoxysilane modified and polymerized sol-gel mesoporous SBA-15 silica molecular sieves,” Microporous and Mesoporous Materials, vol. 123, no. 1-3, pp. 193–201, 2009. View at: Publisher Site | Google Scholar
  66. K. Möller, J. Kobler, and T. Bein, “Colloidal suspensions of nanometer-sized mesoporous silica,” Advanced Functional Materials, vol. 17, no. 4, pp. 605–612, 2007. View at: Publisher Site | Google Scholar
  67. H.-M. Kao, T.-Y. Shen, J.-D. Wu, and L.-P. Lee, “Control of ordered structure and morphology of cubic mesoporous silica SBA-1 via direct synthesis of thiol-functionalization,” Microporous and Mesoporous Materials, vol. 110, no. 2-3, pp. 461–471, 2008. View at: Publisher Site | Google Scholar
  68. S. Lagergren, “About the theory of so-called adsorption of soluble substances,” Kungliga Svenska Vetenskapsakademiens Handlingar, vol. 24, no. 4, pp. 1–39, 1898. View at: Google Scholar
  69. Y. S. Ho and G. McKay, “The kinetics of sorption of divalent metal ions onto sphagnum moss peat,” Water Research, vol. 34, no. 3, pp. 735–742, 2000. View at: Publisher Site | Google Scholar
  70. Y.-S. Ho, “Citation review of Lagergren kinetic rate equation on adsorption reactions,” Scientometrics, vol. 59, no. 1, pp. 171–177, 2004. View at: Publisher Site | Google Scholar
  71. E. Bulut, M. Özacar, and I. A. Şengil, “Adsorption of malachite green onto bentonite: equilibrium and kinetic studies and process design,” Microporous and Mesoporous Materials, vol. 115, no. 3, pp. 234–246, 2008. View at: Publisher Site | Google Scholar
  72. I. Langmuir, “The adsorption of gases on plane surfaces of glass, mica and platinum,” Journal of the American Chemical Society, vol. 40, no. 9, pp. 1361–1403, 1918. View at: Google Scholar
  73. H. Freundlich, “Over the adsorption in solution,” Journal of Physical Chemistry, vol. 57, Article ID 385471, pp. 1100–1107, 1906. View at: Google Scholar
  74. K. R. Hall, L. C. Eagleton, A. Acrivos, and T. Vermeulen, “Pore- and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions,” Industrial & Engineering Chemistry Fundamentals, vol. 5, no. 2, pp. 212–223, 1966. View at: Google Scholar
  75. P. K. Malik, “Dye removal from wastewater using activated carbon developed from sawdust: adsorption equilibrium and kinetics,” Journal of Hazardous Materials, vol. 113, no. 1–3, pp. 81–88, 2004. View at: Publisher Site | Google Scholar
  76. V. Poots, G. J. McKay, and Healy., “Removal of basic dye from effluent using wood as an adsorbent,” Journal (Water Pollution Control Federation), pp. 926–935, 1978. View at: Google Scholar
  77. D. Peak and D. Sparks, “Mechanisms of selenate adsorption on iron oxides and hydroxides,” Environmental Science & Technology, vol. 36, no. 7, pp. 1460–1466, 2002. View at: Google Scholar
  78. M. Barathi, A. Santhana Krishna Kumar, and N. Rajesh, “A novel ultrasonication method in the preparation of zirconium impregnated cellulose for effective fluoride adsorption,” Ultrasonics Sonochemistry, vol. 21, no. 3, pp. 1090–1099, 2014. View at: Publisher Site | Google Scholar
  79. S. S. Ramamurthy, Y. Chen, M. K. Kalyan, G. N. Rao, J. Chelli, and S. Mitra, “Carbon nanotube-zirconium dioxide hybrid for defluoridation of water,” Journal of Nanoscience and Nanotechnology, vol. 11, no. 4, pp. 3552–3559, 2011. View at: Publisher Site | Google Scholar
  80. M. Tuzen and A. Sari, “Biosorption of selenium from aqueous solution by green algae (Cladophora hutchinsiae) biomass: Equilibrium, thermodynamic and kinetic studies,” Chemical Engineering Journal, vol. 158, no. 2, pp. 200–206, 2010. View at: Publisher Site | Google Scholar
  81. Y. Fu, J. Wang, Q. Liu, and H. Zeng, “Water-dispersible magnetic nanoparticle-graphene oxide composites for selenium removal,” Carbon, vol. 77, pp. 710–721, 2014. View at: Publisher Site | Google Scholar
  82. Y. T. Chan, W. H. Kuan, T. Y. Chen, and M. K. Wang, “Adsorption mechanism of selenate and selenite on the binary oxide systems,” Water Research, vol. 43, no. 17, pp. 4412–4420, 2009. View at: Publisher Site | Google Scholar
  83. A. W. Lounsbury, J. S. Yamani, C. P. Johnston, P. Larese-Casanova, and J. B. Zimmerman, “The role of counter ions in nano-hematite synthesis: implications for surface area and selenium adsorption capacity,” Journal of Hazardous Materials, vol. 310, pp. 117–124, 2016. View at: Publisher Site | Google Scholar

Copyright © 2017 Megha Thakkar and Somenath Mitra. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Related articles

No related content is available yet for this article.
 PDF Download Citation Citation
 Download other formatsMore
 Order printed copiesOrder

Related articles

No related content is available yet for this article.

Article of the Year Award: Outstanding research contributions of 2020, as selected by our Chief Editors. Read the winning articles.